Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

SUPPORTING INFORMATION

Maria Torres-Werlé,^[a] Adela Nano,^[a] Aline Maisse-François,^[a] Stéphane Bellemin-

Laponnaz* [a,b]

 [a] Dr. M. Torres-Werlé, A. Nano, Dr. A. Maisse-François, Dr. S. Bellemin-Laponnaz, Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France Fax: (+33) 388 107 246 E-mail: bellemin@unistra.fr

^[b] Dr. S. Bellemin-Laponnaz Institute for Advanced Study, Université de Strasbourg, France.

General considerations

All manipulations (except catalytic runs) were performed under an inert atmosphere of argon or nitrogen using standard Schlenk line techniques. Valinol and phenylglycinol were obtained by reduction of Valine and Phenylglycine, respectively.^[1] All other reagents were commercially available and used as received. Solvents were purified and degassed by standard procedures. Metal complexes were obtained using methanol as solvent (ACS reagent grade). ¹H and ¹³C Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker AVANCE 300 spectrometer using the residual solvent peak as reference (CDCl₃: $\delta_{\rm H} = 7.26$ ppm; $\delta_{\rm C} = 77.16$ ppm) at 298K. Chemical shifts are given in ppm (δ) compared to TMS (tetramethylsilane). Infrared (IR) spectra were recorded on a Nicolet 380 FT-IR spectrometer. KBr discs were made for all samples. Elemental analyses were recorded by the 'Institut de Chimie' laboratory, Université de Strasbourg. HRMS ESI analyses were recorded on microTOF, Bruker Daltonics by the 'Institut de Chimie' laboratory, Université de Strasbourg. Specific rotations were recorded at the 'Laboratoire de Stéréochimie', ECPM, Strasbourg. HPLC analyses were performed on a Gilson apparatus (UV-VIS156/321 PUMP) with Chiralcel Daicel columns (AD, OD-H, AS, 0.46 X 25 cm) using *n*-Hexane/*i*-PrOH eluents. A dual wavelength UV detector was used. To confirm the retention times of both enantiomers, all racemic derivatives were prepared and injected on chiral HPLC.

*i*Pr-DiBox (1), Ph-DiBox (2), *i*Pr-TriBox (3) and *i*Pr-TetraBox (4) have been prepared as previously reported.^[2]

Methods Used to Assay Enantiomeric Excess

Product	ee assay	Conditions	Retention time	Retention time	[α]
			of enantiomer	of enantiomer	Solvent
			1 (min)	2 (min)	
ŅН	HPLC	Hexane/iPrOH	21.5	25.0	(-)
NO ₂	Chiracel OD-	90/10		(major	CH_2Cl_2
	H column	flow: 0.9		enantiomer)	
NO ₂		mL/min			

Conversions and ee determinations of the nitroaldolisation product

For other ee assays, see :

a) D. A. Evans, D. Seidel, M. Rueping, H. W. Lam, J. T. Shaw, C. W. Downeys, J. Am. Chem. Soc. 2003, 125, 12692.

b) Y. Xiong, F. Wang, X. Huang, Y. Wen, X. Feng, Chem. Eur: J. 2007, 13, 829.

c) M. Bandini, F. Piccinelli, S. Tommasi, A. Umani-Ronchi, C. Ventrici, *Chem. Commun.* 2007, 616.

d) I. Panov, P. Drabina, Z. Padelkova, P. Simunek, M. Sedlàk, J. Org. Chem. 2011, 76, 4787.

e) G. Lai, F. Guo, Y. Zheng, Y. Fang, H. Song, K. Xu, S. Wang, Z. Zha, Z. Wang, *Chem. Eur: J.* 2011, 17, 1114.

Conversions and ee determinations of the benzoylation product

Product	ee assay	Conditions	Retention time	Retention time	[α]
			of enantiomer	of enantiomer	Solvent
			1 (min)	2 (min)	
OH	HPLC	Hexane/iPrOH	11.2	19.0	(+)
	Chiracel AD	80/20		(major	CH_2Cl_2
Ph O	column	flow: 1		enantiomer)	
1 <i>(R)</i> ,2 <i>(S)</i>		mL/min			

For other ee assays, see :

a) Y. Matsumura, T. Maki, S. Murakami, O. Onomura, J. Am. Chem. Soc. 2003, 125, 2052

b) D. Nakamura, K. Kakiuchi, K. Koga, R. Shirai, Org. Lett. 2006, 8, 6139.

c) E. P. Kündig, A. E. Garcia, T. Lomberget, P. Perez Garcia, P. Romanens, *Chem. Commun.* **2008**, 3519

Conversions and ee determinations of the benzoylation product and diol

Product	ee assay	Conditions	Retention time of enantiomer 1 (min)	Retention time of enantiomer 2 (min)	[α] Solvent
O Ph ^(R) (R) Ph (1 <i>R</i> ,2 <i>R</i>)	HPLC Chiracel AS column	Hexane/ <i>i</i> PrOH 85/15 flow: 0.9 mL/min	11.1	14.5	(+) CHCl3
OH Ph ^(S) (S)OH Ph (S,S)	HPLC Chiracel AS column	Hexane/ <i>i</i> PrOH 85/15 flow: 0.9 mL/min	9.6	12.5	(+) CHCl3

For other ee assays, see :

- a) Y. Matsumura, T. Maki, S. Murakami, O. Onomura, J. Am. Chem. Soc. 2003, 125, 2052
- b) A. Gissibl, M. G. Finn, O. Reiser, Org. Lett. 2005, 7, 2325.
- c) C. Mazet, S. Roseblade, V. Köhler, A. Pfaltz, Org. Lett. 2006, 8, 1879.
- d) A. Schätz, R. N. Grass, Q. Kainz, W. J. Stark, O. Reiser, Chem. Mater. 2010, 22, 305.

Kinetic resolution of rac-hydrobenzoin

Equations used to calculate the selectivity factor:

- (ee of starting material)/(ee of product) = (conversion)/(1-conversion)
- s = (ln[1-conversion(1+ee of product)])/(ln[1-conversion(1-ee of product)])

ee

ee'

RUN 1 2 3 4 5 6 conv _(exp) 49 50 48 50 45 16 ee 92 86 79 85 59 <10 (S)-iPr-DiBox ee' 93 94 90 82 68 17 conv _(th) 50 48 47 51 46 10 s 91 89 46 27 9.4 14 (R)-Ph-DiBox ee' 83 88 88 90 88 - (R)-Ph-DiBox ee' 83 88 88 90 - - (S)-iPr-TriBox ee' 94 67								
conv _(exp) 49 50 48 50 45 16 ee 92 86 79 85 59 <10		RUN	1	2	3	4	5	6
ee 92 86 79 85 59 <10 (S)-iPr-DiBox ee' 93 94 90 82 68 17 conv _{(th}) 50 48 47 51 46 10 s 91 89 46 27 9.4 1.4 (R)-Ph-DiBox conv _(exp) 49 54 51 53 50 - (R)-Ph-DiBox ee' 83 88 88 90 88 - (S)-iPr-TriBox ee' 85 84 82 80 - - (S)-iPr-TriBox ee' 94 67 84 93 - - (S)		conv _(exp)	49	50	48	50	45	16
(S)-iPr-DiBox ee' 93 94 90 82 68 17 conv _(th) 50 48 47 51 46 10 S 91 89 46 27 9.4 1.4 (R)-Ph-DiBox ee' 49 54 51 53 50 - (R)-Ph-DiBox ee' 83 88 88 90 88 - (S)-iPr-TriBox ee' 85 84 82 80 - - (S)-iPr-TriBox ee' 94 67 84 93 - - S 88 37 29 49 - - -		ee	92	86	79	85	59	<10
conv(th) 50 48 47 51 46 10 S 91 89 46 27 9.4 1.4 (R)-Ph-DiBox conv(exp) ee' 49 54 51 53 50 - (R)-Ph-DiBox ee' 83 88 88 90 88 - s 28 31 36 48 90 88 - (R)-Ph-DiBox ee' 83 88 88 90 88 - s 28 31 36 48 47 - s 28 31 36 48 47 - s 28 31 36 50 - - s 84 82 80 - - s 88 37 29 49 - -	(S)- <i>i</i> Pr-DiBox	ee'	93	94	90	82	68	17
S 91 89 46 27 9.4 1.4 (R)-Ph-DiBox conv _(exp) 49 54 51 53 50 - (R)-Ph-DiBox ee' 83 88 88 90 88 - 50 50 - - - - - - (S)-iPr-TriBox ee' 94 67 84 93 - - (S)-iPr-TriBox ee' 94 67 84 93 - - s 88 37 29 49 - - -		$\operatorname{conv}_{(\operatorname{th})}$	50	48	47	51	46	10
conv _(exp) 49 54 51 53 50 - ee 84 66 76 82 77 - (R)-Ph-DiBox ee' 83 88 88 90 88 - conv _(th) 50 43 46 48 47 - s 28 31 36 48 36 - (S)-iPr-TriBox ee' 94 67 84 93 - - (S)-iPr-TriBox ee' 94 67 84 93 - - s 88 37 29 49 - -		S	91	89	46	27	9.4	1.4
ee 84 66 76 82 77 - (R)-Ph-DiBox ee' 83 88 88 90 88 - conv(th) 50 43 46 48 47 - s 28 31 36 48 36 - (S)-iPr-TriBox ee' 85 84 82 80 - - (S)-iPr-TriBox ee' 94 67 84 93 - - s 88 37 29 49 - - -		conv _(exp)	49	54	51	53	50	-
(R)-Ph-DiBox ee' 83 88 88 90 88 - conv _(th) 50 43 46 48 47 - s 28 31 36 48 36 - s 28 31 36 48 36 - s 28 31 36 50 - - s 47 54 50 50 - - ee 85 84 82 80 - - (S)- <i>i</i> Pr-TriBox ee' 94 67 84 93 - - s 88 37 29 49 - -		ee	84	66	76	82	77	-
conv(th) 50 43 46 48 47 - S 28 31 36 48 36 - S 28 31 36 48 36 - (S)-iPr-TriBox ee' 94 67 84 93 - - S 88 37 29 49 - -	(R)-Ph-DiBox	ee'	83	88	88	90	88	-
s 28 31 36 48 36 - conv _(exp) 47 54 50 50 - - ee 85 84 82 80 - - (S)-/Pr-TriBox ee' 94 67 84 93 - - conv _(th) 47 45 49 46 - - s 88 37 29 49 - -		conv _(th)	50	43	46	48	47	-
conv _(exp) 47 54 50 50 - - ee 85 84 82 80 - - (S)-iPr-TriBox ee' 94 67 84 93 - - conv _(th) 47 45 49 46 - - s 88 37 29 49 - -		S	28	31	36	48	36	-
ee 85 84 82 80 - - (S)-iPr-TriBox ee' 94 67 84 93 - - conv _(th) 47 45 49 46 - - s 88 37 29 49 - -		conv _(exp)	47	54	50	50	-	-
(S)-iPr-TriBox ee' 94 67 84 93 - - conv _(th) 47 45 49 46 - - s 88 37 29 49 - -		ee	85	84	82	80	-	-
conv _(th) 47 45 49 46 - - s 88 37 29 49 - -	(S)- <i>i</i> Pr-TriBox	ee'	94	67	84	93	-	-
S 88 37 29 49		conv _(th)	47	45	49	46	-	-
		S	88	37	29	49	-	-
conv _(exp) 45 57 50 44		conv _(exp)	45	57	50	44	-	-
ee 72 81 71 80		ee	72	81	71	80	-	-
(S)-iPr-TetraBox ool oo oo	(S)- <i>i</i> Pr-TetraBox	ee'	94	92	89	88	-	-
(0) # 161/02/07 66 94 92 89 88		$\operatorname{conv}_{(\operatorname{th})}$	43	47	44	48	-	-
conv _(th) 43 47 44 48								

 $conv_{(exp)}$ = conversion determined by ¹H NMR in the crude.

 $conv_{(th)}$ = conversion determined from the enantiomeric excess of starting material and the enantiomeric excess of product.

[1] A. Abiko, S. Masamune, *Tetrahedron Lett.* 1992, 33, 5517.

[2] M. Torres, A. Maisse-Fançois, S. Bellemin-Laponnaz, ChemCatChem 2013, 5, 3078.

	Inj. Number	R. Time	Area	Area %	Sample Descrip.	Peak Name
1	1	11.31	29139932.00	87.72	MT_546	*3
2	1	19.21	4083272.25	12.28	MT_546	*4

Benzoylation of meso-hydrobenzoin Table 1, Entry 2 Ligand (R,R) Ph-DiBox

.

- Aller	lnj. Number	R. Time	Area	Area %	Sample Descrip.	Peak Name
1	1	11.24	1180766.25	10.06	MT_558	*1
2	1	19.00	10556045.00	89.94	MT_558	*2

Benzoylation of meso-hydrobenzoin Table 1, Entry 3 Ligand (S,S) iPr-DiBox

	Inj. Number	R. Time	Area	Area %	Sample Descrip.	Peak Name
1	1	11.07	2195412.25	25.32	MT_561	*1
2	1	18.70	6473653.00	74.68	MT_561	*2

Benzoylation of meso-hydrobenzoin Table 2, Entry 1, Run 4 Ligand (S,S) iPr-DiBox

	Inj. Number	R. Time	Area	Area %	Sample Descrip.	Peak Name
1	1	11.24	3465864.00	20.37	MT_555	*2
2	1	19.00	13546493.00	79.63	MT_555	.*3

Benzoylation of meso-hydrobenzoin Table 2, Entry 4, Run 4 Ligand (S,S) iPr-TetraBox

	lnj. Number	R. Time	Area	Area %	Sample Descrip.	Peak Name
1	1	9.60	971901.81	3.47	MT_582	·*1
2	1	11.08	995889.38	3.55	MT_582	*2
3	1	12.55	8640794.00	30.84	MT_582	*3
4	1	14.31	17411008.00	62.14	MT_582	*4

Kinetic Resolution of rac-hydrobenzoin Peak 1 and 3: hydrobenzoin Peak 2 and 4: product Table 3, ligand (S,S) iPr-DiBox, run 3

	Inj. Number	R. Time	Area	Area %	Sample Descrip.	Peak Name
1	1	9.85	23364804.00	47.66	MT_581	*1
2	1	11.12	21458248.00	43.77	MT_581	*5*
3	1	12.66	2152407.25	4.39	MT_581	*7
4	1	14.52	2046736.12	4.18	MT_581	*9

Kinetic Resolution of rac-hydrobenzoin Peak 1 and 3: hydrobenzoin Peak 2 and 4: product Table 3, ligand (R,R) Ph-DiBox, run 1

	Inj. Number	R. Time	Area	Area %	Sample Descrip.	Peak Name
1	1	20.88	14759151.00	68.15	MT_247	*1
2	1	24.45	6898212.50	31.85	MT_247	*2

Henry reaction Table 4, Entry 4 Ligand (R,R) Ph-Dibox

	Inj. Number	R. Time	Area	Area %	Sample Descrip.	Peak Name
1	1	20.93	4997235.00	82.89	MT_254	*1
2	1	24.51	1031672.56	17.11	MT_254	*2

Henry reaction Table 4, Entry 5 Ligand (R,R) iPrBox

ALC: NO	Inj. Number	R. Time	Area	Area %	Sample Descrip.	Peak Name
1	1	19.15	3943539.75	10.50	MT_112a	*1
2	1	21.27	33613981.00	89.50	MT_112a	*2

Henry reaction Table 6, Run 1 Ligand (S,S) iPr-TetraBox

:

