Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Electronic Supporting Information

for

Efficient synthesis of small-sized phosphonated dendrons: potential organic coatings of iron oxide nanoparticles

Antonio Garofalo,^{a‡} Audrey Parat,^{a‡} Marie Kueny-Stotz,^a Cynthia Ghobril,^a Catalina Bordeianu,^a Aurélie Walter,^a Julien Jouhannaud,^a Sylvie Begin-Colin,^a and Delphine Felder-Flesch^a*

Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43 67034, STRASBOURG cedex 2, France *corresponding author e-mail: Delphine.Felder@ipcms.unistra.fr

[†]These authors contributed equally to the work performed

Table of contents

I.Synthetic Part	2 -
1.Part I: PEGylated dendrons	2 -
1.1.General procedure for Steglich-type reaction with carboxylic acid 8 (27, 29, 31	, 33)
1.2.General procedure for hydrogenation with palladium on carbon (28, 30, 32, 34) 1.3.General procedure for the Williamson [36] etherification with tosylated hydrox dPEG TM ₈ -t-butyl ester 35 (36-39)) 7 - .y- 8 -
2.Part II: PAMAM-PEG dendrons2.1.General procedure for the "Click chemistry" reaction with azide derivatives 63 (73, 74 and 75)	14 - or 65 15 -
3.Part III: Linear phosphonates	16 -
3.1.General procedure for the "Click chemistry" reaction with propargyl bromide (76,78)
3.2.General procedure for bromination of 88 and 89	18 -
II-IR spectra of dendronized NPs	
III.References used for experimental procedures	- 150 -

I.Synthetic Part

1.Part I: PEGylated dendrons

Compound 5: A solution of *para*-toluenesulfonyl chloride (22.3 g, 105 mM) in THF (35 mL) was added dropwise to a solution of tetraethyleneglycol monomethyl ether (20.0 g, 96 mM) and NaOH (6.7 g, 166 mM) in a mixture of THF/H₂O (135 mL/45 mL) kept at 0°C. After 1 hr stirring at 0°C, the reaction was allowed to warm to room temperature and stirred for 20 additional hours. The solution was then poured into 200 mL of brine and the volatiles were evaporated. The resulting mixture was extracted several times with CH₂Cl₂ and the combined organic layers were washed with brine, dried over MgSO₄ and filtered. The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 98:2) to yield **5** (90.2 mmol., 94%). Pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, *J* = 1.5 Hz, 2H, Ar-2,6-*H*), 7.28 (d, *J* = 1.5 Hz, 2H, Ar-3,5-*H*), 4.11-4.08 (m, 2H, ArSO₂OC*H*₂), 3.64-3.47 (m, 14H, OCH₂CH₂O), 3.31 (s, 3H, OCH₃), 2.39 (s, 3H, ArCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 144.9 (Ar-S), 133.2 (Ar-CH₃), 130.0 (Ar), 72.1 (PEG), 70.9 (PEG), 70.7 (PEG), 70.6 (PEG), 69.5 (PEG), 68.8 (PEG), 59.1 (OCH₃), 21.8 (CH₃). MS (MALDI-TOF) m/z calculated for C₁₆H₂₆NaO₅S: 385.14, obtained: 385.13.

Compound 6: A solution of methyl gallate (20.0 g, 108.6 mmol), benzyl bromide (14.2 mL, 119.0 mmol, 1.1 equiv.), KHCO₃ (32.4 g, 324.0 mmol, 3.0 equiv.) and KI (0.1 g, 0.60 mmol) in DMF (100 mL) was stirred for 4 days at 30°C. The reaction mixture was then poured into 1 L of water and sulfuric acid was added until neutral pH was reached. The aqueous layer was extracted 3 times with CH₂Cl₂ (150 mL). The combined organic layers were washed three times with brine (50 mL), dried over MgSO₄ and filtered. The solvent was removed and the residue was purified by column chromatography (SiO₂, CH₂Cl₂ /MeOH 98:2) to provide a yellow oil, which was further washed with petroleum ether and afforded **6** (76.0 mmol, 70%). White foam. ¹H NMR (300 MHz, CD₃OD-*d*) δ 7.52 (d, *J* = 7.5 Hz, 2H, Ar²-2,6-*H*), 7.31 (m, 3H, Ar²-3,4,5-*H*), 7.13 (s, 2H, Ar¹-2,6-*H*), 5.18 (s, 2H, Ar²OCH₂), 3.83 (s, 3H, COOCH₃); ¹³C NMR (75 MHz, CD₃OD-*d*) δ 167.1 (COOCH₃), 150.5 (Ar-OH), 138.2 (Ar-O-CH₂), 137.2 (CH₂-Ar^{Bz}), 128.5 (Ar^{Bz}), 128.0 (Ar^{Bz}), 127.8 (Ar^{Bz}), 125.0 (Ar-COOCH₃), 108.8 (Ar), 73.8 (OCH₂), 51.2 (COOCH₃). MS (MALDI-TOF) m/z calculated for C₁₀H₁₂NaO₅: 225.20, obtained: 225.09.

Compound 7: A solution of **5** (26.9 g, 74.3 mmol, 2.2 equiv.), **6** (9.2 g, 33.4 mmol), K₂CO₃ (28.0 g, 200 mmol, 6.0 equiv.) and KI (0.6 g, 3.3 mM, 0.1 equiv.) in acetone (600 mL) was stirred 30 hrs at 65°C. The reaction mixture was filtered over Celite and the solvent was evaporated. The resulting crude product was diluted in CH₂Cl₂ (200 mL) and washed twice with an aqueous saturated solution of NaHCO₃ and with brine. After drying over MgSO₄, filtration and evaporation of the solvent, the crude product was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5) to afford **7** (25.1 mmol, 75%). Colourless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.48 (d, *J* = 7.7 Hz, 2H, Ar²-2,6-*H*), 7.28 (m, 5H, Ar²-3,4,5-*H* and Ar¹-2,6-*H*), 5.12 (s, 2H, Ar²OCH₂), 4.20-4.17 (t, *J* = 4.8 Hz, 4H, Ar¹OCH₂), 3.90 (s, 3H, COOCH₃), 3.88-3.85 (t, *J* = 4.8 Hz, 4H, OCH₂CH₂O), 3.74-3.69 (m, 4H, OCH₂CH₂O), 3.67-3.60 (m, 16H, OCH₂CH₂O), 3.54-3.50 (m, 4H, OCH₂CH₂O), 3.35 (s, 6H, OCH₂CH₂OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 166.9 (COOCH₃), 152.5 (Ar), 142.2 (Ar), 138.2 (CH₂-Ar^{Bz}), 128.2 (Ar^{Bz}), 128.0 (Ar^{Bz}), 127.8 (Ar^{Bz}), 125.3 (Ar-COOCH₃), 109.1 (Ar), 74.8 (OCH₂), 72.3 (PEG), 71.2 (PEG), 71.0 (PEG), 70.9 (PEG), 70.8 (PEG), 70.0 (PEG), 69.2 (PEG), 59.3 (OCH₃), 52.5 (COOCH₃). MS (MALDI-TOF) m/z calculated for C₃₃H₅₀NaO₁₃: 677.33, obtained: 677.03.

Compound 8: Sodium hydroxide (2.6 g, 63.5 mmol, 5 equiv.) was added to a solution of **7** (8.3 g, 12.7 mmol) in a mixture of MeOH/water 4/1 (150 mL). The reaction mixture was stirred 2 hrs at 70°C,

concentrated *in vacuo* and hydrolyzed (200 mL). The pH was adjusted to 3 by addition of HCl 12 N and the aqueous solution was extracted with CH₂Cl₂ (3 x 100 mL). The combined organic phases were washed with brine and water, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude material was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5) to afford **8** (11.4 mM, 90%). Colourless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, J = 7.8 Hz, 2H, Ar²-2,6-*H*), 7.38 (s, 2H, Ar¹-2,6-*H*), 7.35-7.28 (m, 3H, Ar²-3,4,5-*H*), 5.13 (s, 2H, Ar²OCH₂), 4.20-4.16 (t, J = 4.8 Hz, 4H, Ar¹OCH₂), 3.87-3.82 (t, J = 4.8 Hz, 4H, OCH₂CH₂O), 3.74-3.69 (m, 4H, OCH₂CH₂O), 3.67-3.61 (m, 16H, OCH₂CH₂O), 3.54-3.50 (m, 4H, OCH₂CH₂O), 3.37 (s, 6H, OCH₂CH₂OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 169.6 (COOH), 152.8 (Ar), 142.4 (Ar), 137.9 (CH₂-Ar^{Bz}), 128.2 (Ar^{Bz}), 128.0 (Ar^{Bz}), 127.8 (Ar^{Bz}), 124.8 (Ar-COOH), 109.2 (Ar), 74.8 (OCH₂), 72.3 (PEG), 71.2 (PEG), 71.0 (PEG), 70.9 (PEG), 70.0 (PEG), 70.0 (PEG), 69.2 (PEG), 59.1 (OCH₃). MS (MALDI-TOF) m/z calculated for C₃₂H₄₈O₁₃: 640.31, obtained: 640.24; calculated for C₂₉H₄₈NaO₁₃: 627.30, obtained: 643.09.

Compound 9: 13.5 mL LiAlH₄ (1.0 M in THF) were slowly added to a solution of **7** (5.9 g, 9.0 mmol) in THF (100 mL) kept at 0°C. After 1 hr stirring at room temperature, the unreacted metal hydride was neutralized with ethyl acetate, MeOH and water and the mixture was evaporated under reduced pressure. The crude material was diluted with CH₂Cl₂ (100 mL). The organic phase was washed with a solution of HCl 1 N and brine, dried over MgSO₄, filtered and concentrated under reduced pressure to afford **9** (8.1 mM, 90%) which was used without further purification. Colourless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, *J* = 8.0 Hz, 2H, Ar²-2,6-*H*), 7.36-7.30 (m, 3H, Ar²-3,4,5-*H*), 6.62 (s, 2H, Ar¹-2,6-*H*), 5.02 (s, 2H, Ar²OC*H*₂), 4.58 (d, *J* = 6.0 Hz, 2H, Ar¹C*H*₂OH), 4.18-4.14 (t, *J* = 4.8 Hz, 4H, Ar¹OC*H*₂), 3.86-3.81 (t, *J* = 4.8 Hz, 4H, OCH₂CH₂O), 3.71-3.68 (m, 4H, OCH₂CH₂O), 3.65-3.58 (m, 16H, OCH₂CH₂O), 3.55-3.50 (m, 4H, OCH₂CH₂O), 3.35 (s, 6H, OCH₂CH₂OC*H*₃); ¹³C NMR (75 MHz, CDCl₃) δ 152.8 (Ar), 138.2 (Ar), 137.4 (CH₂-Ar^{Bz}), 136.9 (Ar), 128.4 (Ar^{Bz}), 128.1 (Ar^{Bz}), 127.7 (Ar^{Bz}), 105.3 (Ar), 74.8 (OCH₂), 71.8 (PEG), 70.6 (PEG), 70.4 (PEG), 70.3 (PEG), 70.2 (PEG), 69.8 (PEG), 68.7 (PEG), 64.9 (HOCH₂), 58.9 (OCH₃). MS (MALDI-TOF) m/z calculated for C₃₂H₅₀KO₁₂: 665.23, obtained: 665.06.

Compound 10: Thionyl chloride (0.5 mL, 6.5 mmol, 1.5 equiv.) was slowly added to a solution of **9** (2.7 g, 4.3 mmol) in 50 mL CH₂Cl₂. After 2 hrs stirring under reflux, CH₂Cl₂ (50 mL) was added and the organic phase was washed with brine and water, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude oily mixture obtained was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 98:2) to afford **10** (3.0 mmol, 70%). Colourless oil. ¹H NMR (300 MHz, CDCl₃) δ ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, *J* = 7.9 Hz, 2H, Ar²-2,6-*H*), 7.36-7.28 (m, 3H, Ar²-3,4,5-*H*), 6.62 (s, 2H, Ar¹-2,6-*H*), 5.01 (s, 2H, Ar²OCH₂), 4.50 (s, 2H, Ar¹CH₂Cl), 4.18-4.13 (t, *J* = 4.9 Hz, 4H, Ar¹OCH₂), 3.88-3.82 (t, *J* = 4.8 Hz, 4H, OCH₂CH₂O), 3.73-3.68 (m, 4H, OCH₂CH₂O), 3.65-3.58 (m, 16H, OCH₂CH₂O), 3.56-3.51 (m, 4H, OCH₂CH₂O), 3.35 (s, 6H, OCH₂CH₂OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 152.8 (Ar), 138.2 (Ar), 138.0 (CH₂-Ar^{Bz}), 132.8 (Ar), 128.4 (Ar^{Bz}), 128.2 (Ar^{Bz}), 127.8 (Ar^{Bz}), 108.0 (Ar), 74.8 (OCH₂), 71.8 (PEG), 70.7 (PEG), 70.5 (PEG), 70.4 (PEG), 70.3 (PEG), 69.7 (PEG), 68.9 (PEG), 59.0 (OCH₃), 46.8 (CICH₂). MS (MALDI-TOF) m/z calculated for C₃₂H₄₉ClO₁₁: 640.30, obtained: 640.24; calculated for C₂₈H₄₇BrNaO₁₁: 661.22, obtained: 661.00; calculated for C₂₈H₄₉BrNaO₁₁: 663.23, obtained: 663.00.

Compound 11: A solution of **10** (2.1 g, 3.3 mmol) in triethyl phosphite (3.0 mL) was stirred at 160°C for 2 hrs. The excess of solvent was evaporated under reduced pressure at 70°C. The crude product was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5) to afford **11** (2.8 mmol, 85%). Pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, *J* = 7.8 Hz, 2H, Ar²-2,6-*H*), 7.35-7.29 (m, 3H, Ar²-3,4,5-*H*), 6.53 (d, *J* = 2.6 Hz, 2H, Ar¹-2,6-*H*), 5.01 (s, 2H, Ar²OCH₂), 4.15-4.10 (t, *J* = 4.8 Hz, 4H, Ar¹OCH₂), 4.10-3.92 (m, 4H, PO(OCH₂CH₃)₂), 3.87-3.80 (t, *J* = 4.8 Hz, 4H, OCH₂CH₂O), 3.73-3.68 (m, 4H, OCH₂CH₂O), 3.66-3.59 (m, 16H, OCH₂CH₂O), 3.55-3.50 (m, 4H, OCH₂CH₂O), 3.36 (s, 6H, OCH₂CH₂OCH₃), 3.05 (d, *J* = 21.5 Hz, 2H, Ar¹CH₂P), 1.25 (t, *J* = 7.0 Hz, 6H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 152.7 (*J* = 3.2 Hz) (Ar), 138.2 (CH₂-Ar^{Bz}), 137.0 (*J* = 3.8 Hz) (Ar), 128.2 (Ar^{Bz}), 128.0 (Ar^{Bz}), 126.9 (*J* = 8.8 Hz) (Ar^{Bz}), 109.1 (*J* = 6.5 Hz) (Ar), 74.8 (OCH₂), 71.9 (PEG), 70.8 (PEG), 70.7 (PEG), 70.6 (PEG), 70.5 (PEG), 69.7 (PEG), 68.8 (PEG), 62.1 (*J* = 6.8 Hz) (CH₂CH₃),

59.0 (OCH₃), 33.8 (J = 138.9 Hz) (CH-P), 16.4 (J = 6.0 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.32. MS (MALDI-TOF) m/z calculated for C₃₆H₅₉O₁₄P: 746.36, obtained: 746.31; calculated for C₃₂H₅₇NaO₁₄P: 719.34, obtained: 719.07; calculated for C₃₂H₅₇KO₁₄P: 735.31, obtained: 735.02.

Compound 13: A solution of 1-(benzyloxy)-4-(chloromethyl)benzene (2.0 g, 8.6 mmol) in P(OEt)₃ (3 mL) was stirred for 2 hrs at 160°C. The excess of P(OEt)₃ was evaporated under reduced pressure at 70°C. The crude product was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5) to afford **13** (7.9 mmol, 92%). White foam. ¹H NMR (300 MHz, CDCl₃) δ 7.50-7.35 (m, 5H, Ar²-*H*), 7.21 (d, *J* = 8.1 Hz 2H, Ar¹-2,6-*H*), 6.95 (d, *J* = 8.1 Hz 2H, Ar¹-3,5-*H*), 5.07 (s, 2H, Ar¹OC*H*₂), 4.02 (q, *J* = 7.1 Hz, 4H, PO(OC*H*₂CH₃)₂), 3.12 (d, *J* = 21.1 Hz, 2H, Ar¹C*H*₂P), 1.27 (t, *J* = 7.1 Hz, 6H, PO(OCH₂C*H*₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 157.7 (*J* = 3.8 Hz) (Ar), 137.1 (CH₂-Ar^{Bz}), 130.8 (*J* = 6.0 Hz) (Ar), 128.6 (Ar^{Bz}), 128.0 (Ar^{Bz}), 127.5 (Ar^{Bz}), 123.7 (*J* = 9.3 Hz) (Ar), 115.0 (*J* = 2.7 Hz) (Ar), 70.0 (OCH₂), 62.1 (*J* = 6.5 Hz) (CH₂CH₃), 32.7 (*J* = 139.4 Hz) (CH-P), 16.4 (*J* = 6.0 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.79. MS (MALDI-TOF) m/z calculated for C₁₈H₂₄O₄P: 335.13, obtained: 335.16.

Compound 14: Palladium activated on carbon 10% (0.5 equiv.) was added to a solution of **13** (2.0 g, 6.0 mmol) in ethanol absolute (60 mL). The mixture was stirred under a hydrogen atmosphere at room temperature for 16 hrs. The crude mixture was filtered through a plug of Celite before being concentrated under reduced pressure. Phenol **14** (5.3 mmol, 89%) was used without further purification. White solid. Melting point: 93°C. ¹H NMR (300 MHz, CDCl₃) δ 7.05 (dd, J = 2.8 and 8.0 Hz, 2H, Ar-2,6-*H*), 6.61 (d, J = 8.0 Hz 2H, Ar-3,5-*H*), 4.02 (q, J = 7.1 Hz, 4H, PO(OCH₂CH₃)₂), 3.08 (d, J = 21.0 Hz, 2H, Ar¹CH₂P), 1.27 (t, J = 7.1 Hz, 6H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 156.1 (J = 3.8 Hz) (Ar), 130.6 (J = 6.6 Hz) (Ar), 121.0 (J = 9.3 Hz) (Ar), 116.0 (J = 3.2 Hz) (Ar), 62.4 (J = 7.1 Hz) (CH₂CH₃), 32.3 (J = 139.4 Hz) (CH-P), 16.4 (J = 6.0 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 27.58. MS (MALDI-TOF) m/z calculated for C₁₁H₁₈O₄P: 245.09, obtained: 245.13.

Compound 16: CBr₄ (14.2 g, 42.8 mmol, 1.2 equiv.) was added to a solution of 5-(hydroxymethyl)benzene-1,3-diol (5.0 g, 35.7 mmol) in THF (50 mL). The reaction mixture was cooled to 0°C and a solution of PPh₃ (11.2 g, 42.8 mM, 1.2 equiv.) in THF (10 mL) was added dropwise. After 2 hrs of stirring, water (100 mL) was added and THF was evaporated under reduced pressure. The aqueous phase was extracted three times with CH₂Cl₂. The combined organic phases were washed with brine and water, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (SiO₂, cyclohexane/EtOAc 70:30) to afford **16** (31.4 mmol, 88%). White foam. ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.34 (br s, 2H, OH), 6.27 (d, *J* = 2.1 Hz, 2H, Ar-2,4-*H*), 6.14 (t, *J* = 2.1 Hz, 1H, Ar-6-*H*), 4.49 (s, 2H, ArCH₂Br); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 158.4 (Ar), 139.5 (Ar), 107.2 (Ar), 102.5 (Ar), 35.0 (CH₂Br).

Compound 17: A solution of **16** (1.00 g, 5.00 mM) in P(OEt)₃ (2.6 mL, 3.0 equiv.) was stirred for 2 hrs at 160°C. The excess of P(OEt)₃ was evaporated under reduced pressure at 70°C. The crude product was purified by recrystallization (EtOAc/cyclohexane) to afford **17** (3.75 mmol, 75%). White solid. Melting point: 145°C. ¹H NMR (300 MHz, CD₃OD) δ 6.74-6.68 (m, 3H, Ar-2,4,6-*H*), 4.05 (q, *J* = 7.1 Hz, 4H, PO(OCH₂CH₃)₂), 3.17 (d, *J* = 21.9 Hz, 2H, Ar¹CH₂P), 1.28 (t, *J* = 7.1 Hz, 6H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CD₃OD) δ 157.3 (Ar), 132.8 (Ar), 121.8 (Ar), 115.2 (Ar), 62.2 (*J* = 7.2 Hz) (CH₂CH₃), 32.2 (*J* = 138.3 Hz) (CH-P), 15.3 (*J* = 6.0 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CD₃OD) δ 27.81. MS (MALDI-TOF) m/z calculated for C₁₁H₁₇NaO₅P: 283.08, obtained: 283.07; calculated for C₁₁H₃₄NaO₁₀P: 543.16, obtained: 543.15.

Compound 19: LiAlH₄ 0.5 M in THF (36.0 mmol, 1.8 equiv.) was added dropwise at 0°C to a solution of dimethyl 5-hydroxyisophtalate (4.20 g, 20.0 mmol) in anhydrous THF (21 mL). After 3 hrs stirring under reflux, the mixture was cooled to room temperature and acidified with H_2SO_4 (30 mL, 10%). The THF was evaporated under reduced pressure and the resulting aqueous phase was extracted several times (at least 6 times, TLC control) with ethyl acetate. The organic phase was dried over

MgSO₄, filtered and concentrated under reduced pressure to afford **19** (18.8 mmol, 94%). White foam. ¹H NMR (300 MHz, CD₃OD-*d*) δ 6.82 (s, 1H, Ar-4-*H*), 6.71 (s, 2H, Ar-2,6-*H*), 4.52 (d, *J* = 5.8 Hz, 4H, ArCH₂OH); ¹³C NMR (75 MHz, CD₃OD-*d*) δ 157.2 (Ar), 143.7 (Ar), 115.1 (Ar), 112.1 (Ar), 63.0 (CH₂OH). MS (MALDI-TOF) m/z calculated for C₁₀H₁₂NaO₅: 225.20, obtained: 225.09.

Compound 20: A solution of HBr 30% in acetic acid (36.0 mmol, 1.8 equiv.) was added dropwise at 0°C to a solution of **19** (2.00 g, 13.0 mmol) in acetic acid (21 mL). The mixture was stirred 24 hrs at room temperature, and then 80 mL of distilled water were added. A white precipitate was formed and the mixture was stirred for additional 10 minutes. The resulting aqueous phase was extracted 3 times with CH_2Cl_2 (200 mL) and the organic layer was washed with distilled water (2 x 120 mL), a saturated solution of sodium hydrogenocarbonate (2 x 120 mL), and with brine (80 mL). The organic phase was dried over MgSO₄, filtered and concentrated under reduced pressure to afford **20** (12.5 mmol, 96%). White solid. Melting point: 93°C. ¹H NMR (300 MHz, CDCl₃) δ 6.99 (t, *J* = 1.3 Hz, 1H, Ar-4-*H*), 6.04 (d, *J* = 1.3 Hz, 2H, Ar-2,6-*H*), 5.38 (br s, 1H, O*H*), 4.40 (s, 4H, ArC*H*₂Br); ¹³C NMR (75 MHz, CDCl₃) δ 155.8 (Ar), 140.0 (Ar), 122.2 (Ar), 116.2 (Ar), 32.7 (CH₂Br).

Compound 21: A solution of **20** (2.24 g, 8.0 mmol) in P(OEt)₃ (4.0 equiv., 5.0 mL) was stirred 2 hrs at 160°C. The excess of P(OEt)₃ was evaporated under reduced pressure at 70°C. The crude product was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5) to afford **21** (7.6 mmol, 95%). White foam. ¹H NMR (300 MHz, CDCl₃) δ 6.82 (bs, 2H, Ar-2,6-*H*), 6.62 (bs, 1H, Ar-4-*H*), 3.99 (m, 8H, PO(OCH₂CH₃)₂), 3.49 (d, *J* = 21.9 Hz, 4H, ArCH₂P), 1.23 (t, *J* = 7.1 Hz, 12H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 157.9 (Ar), 132.6 (*J* = 10.6 Hz) (Ar), 122.4 (*J* = 6.7 Hz) (Ar), 115.8 (Ar), 62.5 (*J* = 6.6 Hz) (CH₂CH₃), 33.6 (*J* = 138.8 Hz) (CH-P), 16.5 (*J* = 5.2 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.72. MS (MALDI-TOF) m/z calculated for C₁₆H₂₉O₇P₂: 395.14, obtained: 394.96.

Compound 23: was obtained following the same procedure as described for **18**. Starting from 3,5dihydroxybenzoic methyl ester (0.7 g, 4.3 mmol), a white foam (2.8 mmol, 65%) was obtained after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5). ¹H NMR (300 MHz, CDCl₃) δ 7.18 (d, J = 2.5 Hz, 2H, Ar-2,6-*H*), 6.65 (t, J = 2.4 Hz, 1H, Ar-4-*H*), 4.98 (m, 2H, OCH₂CH₂N*H*), 4.04 (t, J = 5.0 Hz, 4H, OCH₂CH₂NH), 3.91 (s, 3H, COOCH₃), 3.56 (m, 4H, OCH₂CH₂NH), 1.45 (s, 18H, COOC(CH₃)); ¹³C NMR (75 MHz, CDCl₃) δ 167.4 (COOCH₃), 159.5 (COO(CH₃)₃), 155.8 (Ar), 132.1 (Ar), 108.1 (Ar), 106.4 (Ar), 79.7 (*C*(CH₃)₃), 67.2 (OCH₂), 52.1 (COOCH₃), 39.9 (*C*H₂NH₂), 28.7 (C(CH₃)₃). MS (MALDI-TOF) m/z calculated for C₂₂H₃₄NaN₂O₈: 477.23, obtained: 477.22; C₄₄H₆₈NaN₄O₁₆: 931.46, obtained: 931.44.

Compound 24: was obtained following the same procedure as described for **8**. Starting from **23** (0.75 g, 1.7 mmol), a white foam (1.5 mmol, 86%) was obtained and used without further purification. ¹H NMR (300 MHz, CDCl₃) δ 7.22 (s, 2H, Ar-2,6-*H*), 6.62 (s, 1H, Ar-4-*H*), 5.02 (m, 2H, OCH₂CH₂N*H*), 4.03 (t, *J* = 4.8 Hz, 4H, OCH₂CH₂NH), 3.52 (m, 4H, OCH₂CH₂NH), 1.48 (s, 18H, COOC(CH₃)); ¹³C NMR (75 MHz, CDCl₃) δ 169.5 (COOH), 159.4 (COO(CH₃)₃), 156.1 (Ar), 136.1 (Ar), 108.2 (Ar), 106.4 (Ar), 79.7 (*C*(CH₃)₃), 67.3 (OCH₂), 39.9 (CH₂NH), 28.5 (C(CH₃)₃). MS (MALDI-TOF) m/z calculated for C₂₁H₃₂NaN₂O₈: 463.22, obtained: 463.20; C₄₂H₆₄NaN₄O₁₆: 903.44, obtained: 903.41.

Compound 25: BOP (0.5 g, 1.2 mmol, 1.3 equiv.) was added to an equimolar solution of **24** (0.4 g, 0.9 mmol) in anhydrous CH₂Cl₂ (20 mL) under argon. **22** (0.4 g, 0.9 mM) and *N*,*N*-diisopropylethylamine (0.45 mL, 2.7 mM, 3 equiv.) were then added and the reaction mixture was stirred overnight at room temperature. CH₂Cl₂ (20 mL) was added and the organic layer was washed with a solution of NaOH 1 N (2 x 20 mL), HCl 1 N (2 x 20 mL), brine (2 x 20 mL) and water (2 x 20 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5) to afford **25** (0.6 mmol, 65%). Colourless oil. ¹H NMR (300 MHz, CDCl₃) δ 6.95 (d, *J* = 2.4 Hz, 2H, Ar¹-2,6-*H*), 6.85-6.78 (m, 3H, Ar²-2,4,6-*H*), 6.69 (t, *J* = 2.4 Hz, 1H, Ar¹-4-*H*), 6.57 (t, *J* = 2.0 Hz, 1H, Ar¹OCH₂CH₂N*H*), 5.02 (m, 2H, Ar²OCH₂CH₂N*H*), 4.13 (t, *J* = 5.0 Hz, 2H, Ar¹OCH₂CH₂NH), 4.07-3.97 (m, 12H,

Ar²OCH₂CH₂NH and PO(OCH₂CH₃)₂), 3.82 (q, J = 5.0 Hz, 2H, Ar¹OCH₂CH₂NH), 3.55-3.50 (m, 4H, Ar²OCH₂CH₂NH), 3.08 (d, J = 22.0 Hz, 4H, Ar¹CH₂P), 1.42 (s, 18H, COOC(CH₃)); 1.25 (t, J = 7.0 Hz, 12H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 167.2 (CONH), 159.8 (Ar), 158.5 (COO(CH₃)₃), 155.8 (Ar), 136.8 (Ar), 133.1 (J = 6.0 Hz) (Ar), 124.0 (Ar), 114.8 (J = 4.5 Hz) (Ar), 106.0 (Ar), 104.7 (Ar), 79.8 (C(CH₃)₃), 67.5 (OCH₂CH₂NHBoc), 66.8 (OCH₂CH₂NH), 62.3 (J = 3.4 Hz) (CH₂CH₃), 39.5 (CH₂NHBoc), 36.8 (J = 4.0 Hz) (CH₂NHCOAr), 33.4 (J = 138.0 Hz) (CH-P), 28.4 (C(CH₃)₃), 16.4 (J = 2.7 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.10. MS (MALDI-TOF) m/z calculated for C₃₉H₆₃NaN₃O₁₄P₂: 882.38, obtained: 882.36.

1.1.General procedure for Steglich-type reaction with carboxylic acid 8 (27, 29, 31, 33)

BOP coupling reagent (1.3 equiv. per acid function) was added under argon to a solution **8** (1.0 equiv. per amine function) in distilled CH_2Cl_2 . After 5 min of stirring, *N*,*N*-diisopropylethylamine (3 equiv. per amine function) and amine derivative (1.0 equiv.) were added. The reaction mixture was stirred overnight at room temperature. CH_2Cl_2 (50 mL) was added and the organic layer was washed with a solution of sodium hydroxide 1 N (2 x 20 mL), HCl 1 N (2 x 20 mL), brine (2 x 20 mL) and water (2 x 20 mL), dried over MgSO₄, filtered and concentrated under reduced pressure.

Compound 27: Starting from **15** (0.30 g, 0.45 mmol), **27** was obtained (0.31 mmol, 68%) as colourless oil after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5). ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, *J* = 8.1 Hz, 2H, Ar¹2,6-*H*), 7.35-7.25(m, 3H, Ar³-3,4,5-*H*), 7.20 (dd, 2H, *J* = 2.4 and 8.5 Hz, Ar³-2,6-*H*), 7.08 (s, 2H, Ar²-2,6-*H*), 6.85 (d, *J* = 8.1 Hz, 3H, Ar¹3,5-*H* and Ar¹OCH₂CH₂N*H*), 5.08 (s, 2H, Ar³OCH₂), 4.18 (t, 4H, *J* = 4.8 Hz, Ar²OCH₂CH₂O), 4.11 (t, 2H, *J* = 5.3 Hz, Ar¹OCH₂CH₂NH), 4.08-3.96 (m, 4H, PO(OCH₂CH₃)₂), 3.85-3.78 (m, 6H, Ar¹OCH₂CH₂NH and OCH₂CH₂O), 3.70-3.50 (m, 24H, OCH₂CH₂O), 3.33 (s, 6H, OCH₂CH₂OCH₃), 3.08 (d, *J* = 21.1 Hz, 2H, Ar¹CH₂P), 1.22 (t, *J* = 7.1 Hz, 6H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 167.2 (NHCO), 157.5 (*J* = 3.3 Hz) (Ar), 152.6 (Ar), 140.7 (Ar), 137.6 (Ar), 130.8 (*J* = 6.6 Hz) (Ar), 129.6 (Ar), 128.4 (Ar), 128.1 (Ar), 127.8 (Ar), 123.9 (*J* = 8.7 Hz) (Ar), 114.6 (*J* = 3.3 Hz) (Ar), 107.0 (Ar), 74.8 (OCH₂), 71.8 (PEG), 70.65 (PEG), 70.5 (PEG), 70.45 (PEG), 70.4 (PEG), 70.35 (PEG), 69.8 (PEG), 68.8 (PEG), 66.6 (OCH₂CH₂NH), 62.0 (*J* = 6.6 Hz) (CH₂CH₃), 58.9 (OCH₃), 39.5 (CH₂NHCOAr), 32.8 (*J* = 138.9 Hz) (CH-P), 16.3 (*J* = 6.0 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.63. MS (MALDI-TOF) m/z calculated for C₄₅H₆₉NO₁₆P: 910.43, obtained: 910.34; calculated for C₄₅H₆₈NaNO₁₆P: 948.40, obtained: 948.30.

Compound 29: Starting from **22** (0.6 g, 1.4 mmol), **29** was obtained (1.2 mmol, 87%) as colourless oil after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5). ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, *J* = 7.7 Hz, 2H, Ar³-2,6-*H*), 7.35-7.28 (m, 3H, Ar³-3,4,5-*H*), 7.07 (s, 2H, Ar²-2,6-*H*), 6.88 (t, *J* = 5.7 Hz, 1H, OCH₂CH₂N*H*), 6.85-6.78 (m, 3H, Ar¹-2,4,6-*H*), 5.07 (s, 2H, Ar³OCH₂), 4.20-4.17 (t, *J* = 4.8 Hz, 4H, Ar²OCH₂), 4.15-4.11 (t, *J* = 5.0 Hz, 2H, OCH₂CH₂NH), 4.08-3.96 (m, 8H, PO(OCH₂CH₃)₂), 3.88-3.78 (m, 6H, OCH₂CH₂NH and OCH₂CH₂O), 3.71-3.68 (m, 4H, OCH₂CH₂O), 3.65-3.58 (m, 16H, OCH₂CH₂O), 1.25 (t, *J* = 7.0 Hz, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 167.2 (NHCO), 158.6 (*J* = 2.8 Hz) (Ar), 152.8 (Ar), 141.0 (Ar), 137.8 (Ar), 133.1 (*J* = 6.0 Hz) (Ar), 129.6 (Ar), 128.2 (Ar), 128.0 (Ar), 127.8 (Ar), 124.0 (*J* = 6.8 Hz) (Ar), 114.6 (*J* = 4.8 Hz) (Ar), 107.0 (Ar), 74.9 (OCH₂), 72.0 (PEG), 70.8 (PEG), 70.7 (PEG), 70.6 (PEG), 69.8 (PEG), 69.1 (PEG), 66.8 (OCH₂CH₂NH), 62.1 (*J* = 3.4 Hz) (CH₂CH₃), 58.9 (OCH₃), 39.5 (CH₂NHCOAr), 33.5 (*J* = 138.3 Hz) (CH-P), 16.5 (*J* = 2.7 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.08. MS (MALDI-TOF) m/z calculated for C₅₀H₇₉NaNO₁₉P₂: 1082.87, obtained: 1082.51.

Compound 31: Starting from **18** (0.9 g, 1.8 mmol), **31** was obtained (1.3 mmol, 70%) as colourless oil after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5). ¹H NMR (300 MHz, CDCl₃) δ 7.48 (d, J = 7.8 Hz, 2H, Ar³-2,6-*H*), 7.35-7.28 (m, 3H, Ar³-3,4,5-*H*), 7.08 (s, 4H, Ar²-2,6-*H*), 6.88 (t, J = 7.2 Hz, 2H, CH₂N*H*CO), 6.48 (t, J = 1.7 Hz, 2H, Ar¹-2,4-*H*), 6.42 (m, 1H, Ar¹-6-*H*), 5.08 (s, 4H, Ar³OCH₂), 4.20-4.15 (t, J = 4.8 Hz, 8H, Ar¹OCH₂), 4.14-4.10 (t, J = 4.8 Hz, 4H,

OCH₂CH₂NH), 4.08-3.93 (m, 4H, PO(OCH₂CH₃)₂), 3.87-3.77 (m, 12H, OCH₂CH₂NH and OCH₂CH₂O), 3.71-3.67 (m, 8H, OCH₂CH₂O), 3.65-3.56 (m, 32H, OCH₂CH₂O), 3.55-3.50 (m, 8H, OCH₂CH₂O), 3.33 (s, 12H, OCH₂CH₂OCH₃), 3.05 (d, J = 21.5 Hz, 2H, Ar¹CH₂P), 1.25 (t, J = 7.0 Hz, 6H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 167.1 (NHCO), 159.5 (Ar), 146.6 (Ar), 141.2 (Ar), 133.9 (J = 5.8 Hz) (Ar), 128.4 (Ar), 128.2 (Ar), 127.8 (Ar), 124.8 (Ar), 108.7 (Ar), 101.1 (Ar), 74.7 (OCH₂), 71.9 (PEG), 70.8 (PEG), 70.7 (PEG), 70.6 (PEG), 69.8 (PEG), 69.5 (PEG), 66.8 (OCH₂CH₂NH), 62.3 (J = 7.0 Hz) (CH₂CH₃), 58.9 (OCH₃), 39.5 (CH₂NHCOAr), 33.4 (J = 137.5 Hz) (CH-P), 16.4 (J = 2.7 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.12. MS (MALDI-TOF) m/z calculated for C₇₉H₁₁₀Na₂O₂₉P: 1591.76, obtained: 1591.74; calculated for C₇₉H₁₁₉Na₂O₂₉P: 1623.76, obtained: 1623.76.

Compound 33: Starting from **26** (0.40 g, 0.45 mmol), **33** was obtained (0.32 mmol, 70%) as colourless oil after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5). ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, J = 7.7 Hz, 2H, Ar³-2,6-*H*), 7.35-7.28 (m, 3H, Ar³-3,4,5-*H*), 7.11 (s, 4H, Ar²-2,6-*H*), 7.05 (t, J = 5.0 Hz, 2H, Ar²OCH₂CH₂N*H*), 6.95 (d, J = 2.3 Hz, 2H, Ar¹-2,6-*H*), 6.69 (t, J = 2.4 Hz, 1H, Ar¹-4-*H*), 6.82-6.78 (m, 3H, Ar²-2,4,6-*H*), 6.64 (t, J = 1.9 Hz, 1H, Ar¹OCH₂CH₂N*H*), 5.07 (s, 4H, Ar³OCH₂), 4.20-4.17 (m, 14H, Ar²OCH₂CH₂O, Ar¹OCH₂CH₂NH and Ar²OCH₂CH₂NH), 4.08-3.96 (m, 8H, PO(OCH₂CH₃)₂), 3.83-3.78 (m, 14H, Ar¹OCH₂CH₂NH, Ar²OCH₂CH₂OH and OCH₂CH₂O), 3.65-3.55 (m, 34H, OCH₂CH₂O), 3.55-3.48 (m, 8H, OCH₂CH₂O), 3.34 (s, 12H, OCH₂CH₂OCH₃), 3.08 (d, J = 22.0 Hz, 4H, Ar¹CH₂P), 1.23 (t, J = 7.0 Hz, 12H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 167.2 (NHCO), 159.8 (Ar), 152.5 (Ar), 141.0 (Ar), 137.8 (Ar), 136.5 (Ar), 133.1 (J = 6.0 Hz) (Ar), 129.5 (Ar), 128.2 (Ar), 128.0 (Ar), 127.8 (Ar), 124.0 (Ar), 114.8 (J = 4.8 Hz) (Ar), 107.8 (Ar), 107.0 (Ar), 106.0 (Ar), 74.9 (OCH₂), 72.0 (PEG), 70.8 (PEG), 70.7 (PEG), 70.6 (PEG), 69.8 (PEG), 69.1 (PEG), 66.8 (OCH₂CH₂NH), 62.1 (J = 3.4 Hz) (CH₂CH₃), 58.9 (OCH₃), 39.5 (CH₂NHCOAr), 33.3 (J = 138.0 Hz) (CH-P), 16.4 (J = 2.7 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.18. MS (MALDI-TOF) m/z calculated for C₉₃H₁₆₉NaN₃O₃₄P₂: 1926.87, obtained: 1926.81.

1.2.General procedure for hydrogenation with palladium on carbon (28, 30, 32, 34)

Benzylated compound (27, 29, 31 or 33) was dissolved in ethanol absolute (20 mL) and palladium activated on carbon 10% (0.5 equiv.) was added. The mixture was stirred under a hydrogen atmosphere at room temperature for 16 hrs. The crude mixture was filtered through a plug of Celite, concentrated and purified by column chromatography.

Compound 28: Starting from **27** (0.6 g, 0.65 mmol), **28** was obtained (0.54 mmol, 83%) as a colourless oil after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5). ¹H NMR (300 MHz, CDCl₃) δ 7.21 (dd, J = 2.5 and 8.1 Hz, 2H, Ar¹2,6-*H*), 7.15 (s, 2H, Ar²-2,6-*H*), 6.86 (d, J = 8.1 Hz, 2H, Ar¹3,5-*H*), 6.78 (t, J = 5.6 Hz, 1H, Ar¹OCH₂CH₂N*H*), 4.21 (t, 4H, J = 4.8 Hz, Ar²OCH₂CH₂O), 4.11 (t, 2H, J = 5.2 Hz, Ar¹OCH₂CH₂NH), 4.05-3.95 (m, 4H, PO(OCH₂CH₃)₂), 3.88-3.80 (m, 6H, Ar¹OCH₂CH₂NH and OCH₂CH₂O), 3.72-3.50 (m, 24H, OCH₂CH₂O), 3.34 (s, 6H, OCH₂CH₂OCH₃), 3.07 (d, J = 21.1 Hz, 2H, Ar¹CH₂P), 1.22 (t, J = 7.0 Hz, 6H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 168.1 (CONH), 157.3 (J = 3.3 Hz) (Ar), 146.8 (Ar), 141.3 (Ar), 130.6 (J = 6.6 Hz) (Ar), 124.6 (Ar), 123.9 (J = 9.3 Hz) (Ar), 114.6 (J = 3.3 Hz) (Ar), 108.6 (Ar), 71.8 (PEG), 70.6 (PEG), 70.5 (PEG), 70.4 (PEG), 70.3 (PEG), 69.6 (J = 7.1 Hz) (PEG), 66.8 (OCH₂CH₂NH), 61.9 (J = 7.1 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.64. MS (MALDI-TOF) m/z calculated for C₃₈H₆₃NO₁₆P: 820.38, obtained: 820.41; calculated for C₃₈H₆₂NaNO₁₆P: 842.38, obtained: 842.40.

Compound 30: Starting from **29** (0.8 g, 0.8 mmol), **30** was obtained (0.64 mmol, 80%) as a colourless oil after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 90:10). ¹H NMR (300 MHz, CDCl₃) δ 7.16 (s, 2H, Ar²-2,6-*H*), 6.85-6.78 (m, 3H, Ar¹-2,4,6-*H*), 6.65 (m, 1H, OCH₂CH₂N*H*), 4.27-4.21 (t, *J* = 4.7 Hz, 4H, Ar²OCH₂), 4.15-4.10 (t, *J* = 5.0 Hz, 2H, OCH₂CH₂NH), 4.08-3.98 (m, 8H, PO(OCH₂CH₃)₂), 3.88-3.78 (m, 6H, OCH₂CH₂NH and OCH₂CH₂O), 3.75-3.60 (m, 20H, OCH₂CH₂O), 3.56-3.51 (m, 4H, OCH₂CH₂O), 3.35 (s, 6H, OCH₂CH₂OCH₃), 3.09 (d, *J* = 22.0 Hz, 4H, Ar¹CH₂P),

1.26 (t, J = 7.1 Hz, 12H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 167.3 (NHCO), 158.7 (J = 2.8 Hz) (Ar), 146.8 (Ar), 141.0 (Ar), 133.1 (J = 6.0 Hz) (Ar), 124.0 (Ar), 114.6 (Ar), 108.4 (Ar), 72.0 (PEG), 70.8 (PEG), 70.7 (PEG), 70.6 (PEG), 69.8 (PEG), 69.1 (PEG), 66.8 (OCH₂CH₂NH), 62.1 (J = 3.4 Hz) (CH₂CH₃), 58.9 (OCH₃), 39.5 (CH₂NHCOAr), 33.4 (J = 138.1 Hz) (CH-P), 16.4 (J = 2.7 Hz); ³¹P NMR (81 MHz, CDCl₃) δ 26.10. MS (MALDI-TOF) m/z calculated for C₄₃H₇₄NO₁₉P₂: 970.43, obtained: 970.44; calculated for C₄₃H₇₃NaNO₁₉P₂: 992.43, obtained: 992.44.

Compound 32: Starting from **31** (1.85 g, 1.2 mmol), **32** was obtained (1.0 mmol, 86%) as a colourless oil after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 90:10). ¹H NMR (300 MHz, CDCl₃) δ 7.25 (br s, 2H, Ar²-O*H*), 7.16 (s, 4H, Ar²-2,6-*H*), 6.85 (t, *J* = 7.2 Hz, 2H, CH₂N*H*CO), 6.47 (t, *J* = 1.7 Hz, 1H, Ar¹-2,4-*H*), 6.40 (m, 1H, Ar¹-6-*H*), 4.22-4.17 (t, *J* = 4.9 Hz, 8H, Ar¹OC*H*₂), 4.12-4.08 (t, *J* = 4.8 Hz, 4H, OC*H*₂CH₂NH), 4.07-3.96 (m, 4H, PO(OC*H*₂CH₃)₂), 3.84-3.75 (m, 12H, OCH₂C*H*₂NH and OCH₂CH₂O), 3.71-3.67 (m, 40H, OCH₂CH₂O), 3.55-3.50 (m, 8H, OCH₂CH₂O), 3.35 (s, 12H, OCH₂CH₂OC*H*₃), 3.06 (d, *J* = 21.5 Hz, 2H, Ar¹C*H*₂P), 1.26 (t, *J* = 7.1 Hz, 6H, PO(OCH₂C*H*₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 167.2, 159.7 (Ar), 146.6 (Ar), 141.2 (Ar), 133.9 (*J* = 6.0 Hz) (Ar), 124.8 (Ar), 108.7 (Ar), 101.1 (Ar), 71.9 (PEG), 70.8 (PEG), 70.7 (PEG), 70.6 (PEG), 69.8 (PEG), 69.5 (PEG), 66.7 (OCH₂CH₂NH), 62.3 (*J* = 7.0 Hz) (CH₂CH₃), 58.9 (OCH₃), 53.2, 39.5, 35.2, 33.4 (*J* = 137.5 Hz) (CH-P), 16.4 (*J* = 2.7 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.10. MS (MALDI-TOF) m/z calculated for C₆₅H₁₀₇NaN₂O₂₉P: 1411.56, obtained: 1411.55; calculated for C₆₅H₁₀₇NaN₂O₂₉P: 1433.67, obtained: 1433.56.

Compound 34: Starting from **33** (0.65 g, 0.34 mmol), **34** was obtained (0.26 mmol, 76%) as a colourless oil after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5). ¹H NMR (300 MHz, CDCl₃) δ 7.62 (br s, 2H, Ar²OH), 7.20 (s, 4H, Ar²-2,6-*H*), 7.11 (t, *J* = 5.5 Hz, 2H, Ar²OCH₂CH₂NH), 6.96 (d, *J* = 1.7 Hz, 2H, Ar¹-2,6-H), 6.80-6.74 (m, 3H, Ar²-2,4,6-H), 6.55 (t, *J* = 1.9 Hz, 1H, Ar¹-4-H), 6.44 (t, *J* = 5.3 Hz, 1H, Ar¹OCH₂CH₂NH), 4.17 (t, *J* = 4.8 Hz, 8H, Ar²OCH₂), 4.11 (t, *J* = 4.6 Hz, 6H, Ar¹OCH₂CH₂NH and Ar²OCH₂CH₂NH), 4.05-3.93 (m, 8H, PO(OCH₂CH₃)₂), 3.83-3.75 (m, 14H, Ar¹OCH₂CH₂NH, Ar²OCH₂CH₂NH and OCH₂CH₂OOH), 3.70-3.60 (m, 34H, OCH₂CH₂O), 3.52-3.48 (m, 8H, OCH₂CH₂O), 3.34 (s, 12H, OCH₂CH₂OCH₃), 3.06 (d, *J* = 22.0 Hz, 4H, Ar¹CH₂P), 1.21 (t, *J* = 7.0 Hz, 12H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 167.2 (NHCO), 159.8 (Ar), 152.5 (Ar), 140.8 (Ar), 136.5 (Ar), 133.1 (*J* = 6.0 Hz) (Ar), 129.5 (Ar), 124.5 (Ar), 114.8 (*J* = 4.8 Hz) (Ar), 108.7 (Ar), 106.0 (Ar), 104.8 (Ar), 71.9 (PEG), 70.8 (PEG), 70.7 (PEG), 70.6 (PEG), 69.8 (PEG), 69.1 (PEG), 66.8 (OCH₂CH₂NH), 62.1 (*J* = 7.0 Hz) (CH₂CH₃), 58.9 (OCH₃), 39.5 (CH₂NHCOAr), 33.4 (*J* = 137.5 Hz) (CH-P), 16.3 (*J* = 2.7 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.12. MS (MALDI-TOF) m/z calculated for C₇₉H₁₂₇NaN₃O₃₄P₂: 1746.78, obtained: 1746.79; calculated for C₇₉H₁₂₆NaKN₃O₃₄P₂: 1786.78, obtained: 1786.75.

1.3.General procedure for the Williamson [36] etherification with tosylated hydroxy-dPEGTM₈-tbutyl ester 35 (36-39)

Compound 35: The synthesis and spectroscopic data of **35** are the same as those reported in the literature. ^[29].

 K_2CO_3 (3 equiv. per phenol) and KI (0.3 equiv. per tosyl) were added to an equimolar solution of phenol (**28, 30, 32** or **34**) and **35** in acetone (15 mL). The reaction mixture was stirred at 60°C during 24 hrs, filtered over Celite, evaporated under reduced pressure and the crude was diluted in CH_2Cl_2 (50 mL). The organic layer was washed twice with a saturated solution of NaHCO₃, then with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography.

Compound 36: Starting from compound **28** (0.12 g, 0.15 mmol), compound **36** was obtained (0.13 mmol, 87%) as a colourless oil after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5). ¹H NMR (300 MHz, CDCl₃) δ 7.20 (dd, J = 2.5 and 8.1 Hz, 2H, Ar¹-2,6-*H*), 7.11 (s, 2H, Ar²-2,6-*H*), 6.91 (t, J = 5.6 Hz, 1H, Ar¹OCH₂CH₂N*H*), 6.84 (d, J = 8.1 Hz, 2H, Ar¹-3,5-*H*), 4.20-4.15 (m,

6H, Ar²OCH₂CH₂O), 4.11 (t, 2H, J = 5.1 Hz, Ar¹OCH₂CH₂NH), 4.05-3.95 (m, 4H, PO(OCH₂CH₃)₂), 3.85-3.77 (m, 8H, Ar¹OCH₂CH₂NH and OCH₂CH₂O), 3.70-3.50 (m, 54H, OCH₂CH₂O), 3.33 (s, 6H, OCH₂CH₂OCH₃), 3.07 (d, J = 21.1 Hz, 2H, Ar¹CH₂P), 2.49 (t, 2H, J = 6.6 Hz, Ar²OCH₂CH₂COOC(CH₃)₃), 1.43 (s, 9H, Ar²OCH₂CH₂COOC(CH₃)₃), 1.22 (t, J = 7.1 Hz, 6H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 171.0 (COO(CH₃)₃), 167.1 (NHCO), 157.6 (J = 3.3Hz) (Ar), 152.5 (Ar), 141.6 (Ar), 130.8 (J = 6.6 Hz) (Ar), 129.5 (Ar), 124.1 (J = 9.3 Hz) (Ar), 114.6 (J = 2.7 Hz) (Ar), 107.4 (Ar), 80.3 (C(CH₃)₃), 72.2 (PEG), 71.9 (PEG), 70.7 (PEG), 70.6 (PEG), 70.5 (PEG), 70.55 (PEG), 70.4 (PEG), 70.3 (PEG), 69.7 (PEG), 69.1 (PEG), 66.8 (OCH₂CH₂NH), 66.6 (CH₂CH₂COO), 62.0 (J = 7.1 Hz) (CH₂CH₃), 58.9 (OCH₃), 39.8 (CH₂NHCOAr), 35.4 (CH₂COO), 32.8 (J = 138.9 Hz) (CH-P), 28.4 (C(CH₃)₃), 16.3 (J = 6.0 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.65. MS (MALDI-TOF) m/z calculated for C₆₁H₁₀₆NaNO₂₆P: 1322.60, obtained: 1322.58; calculated for calculated for C₆₁H₁₀₆KNO₂₆P: 1338.60, obtained: 1338.55.

Compound 37: Starting from **32** (0.3 g, 0.22 mmol), compound **37** was obtained (0.18 mmol, 82%) as a colourless oil after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 90:10). ¹H NMR (300 MHz, CDCl₃) δ 7.13 (s, 4H, Ar²-2,6-*H*), 7.02 (t, *J* = 5.5 Hz, 2H, Ar¹OCH₂CH₂N*H*), 6.47 (t, 2H, *J* = 2.0 Hz, Ar¹-2,6-*H*), 6.41 (t, *J* = 2.0 Hz, 1H, Ar¹-4-*H*), 4.22-4.17 (m, *J* = 4.8 Hz, 12H, Ar²OCH₂CH₂O), 4.11 (t, 4H, *J* = 5.1 Hz, Ar¹OCH₂CH₂NH), 4.05-3.95 (m, 4H, PO(OCH₂CH₃)₂), 3.85-3.75 (m, 16H, Ar¹OCH₂CH₂NH and OCH₂CH₂O), 3.70-3.50 (m, 108H, OCH₂CH₂O), 3.35 (s, 12H, OCH₂CH₂OCH₃), 3.06 (d, *J* = 21.8 Hz, 2H, Ar¹CH₂P), 2.48 (t, 4H, *J* = 6.6 Hz, Ar²OCH₂CH₂COOC(CH₃)₃), 1.41 (s, 9H, Ar²OCH₂CH₂COOC(CH₃)₃), 1.21 (t, *J* = 7.0 Hz, 6H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 170.8 (COO(CH₃)₃), 167.1 (NHCO), 159.6 (*J* = 3.3 Hz) (Ar), 152.5 (Ar), 141.3 (Ar), 129.4 (Ar), 108.8 (*J* = 6.0 Hz) (Ar), 107.2 (Ar), 80.3 (C(CH₃)₃), 72.2 (PEG), 71.9 (PEG), 70.7 (PEG), 70.6 (PEG), 70.55 (PEG), 70.5 (PEG), 70.4 (PEG), 70.3 (PEG), 69.6 (PEG), 69.0 (PEG), 66.8 (OCH₂CH₂NH), 66.6 (CH₂CH₂COO), 62.2 (*J* = 6.6 Hz) (CH₂CH₃), 16.3 (*J* = 6.0 Hz) (CH-P), 28.2 (C(CH₃)₃), 16.3 (*J* = 6.0 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.08. MS (MALDI-TOF) m/z calculated for C₁₁₁H₁₉₅NaN₂O₄₉P: 2394.26 obtained: 2394.06.

Compound 38: Starting from compound **30** (0.3 g, 0.31 mmol), compound **38** was obtained (0.28 mmol, 90%) as a colourless oil after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 90:10). ¹H NMR (300 MHz, CDCl₃) δ 7.10 (s, 2H, Ar²-2,6-*H*), 6.87 (t, *J* = 5.1 Hz, 1H, Ar¹OCH₂CH₂N*H*), 6.80 (t, 1H, *J* = 2.0 Hz, Ar¹-2-*H*), 6.76 (q, 2H, *J* = 2.0 Hz, Ar¹-4,6-*H*), 4.22-4.15 (m, 6H, Ar²OCH₂CH₂O), 4.12 (t, 2H, *J* = 5.1 Hz, Ar¹OCH₂CH₂NH), 4.05-3.95 (m, 8H, *J* = 7.0 Hz, PO(OCH₂CH₃)₂), 3.85-3.75 (m, 8H, Ar¹OCH₂CH₂NH and OCH₂CH₂O), 3.70-3.50 (m, 54H, OCH₂CH₂O), 3.33 (s, 6H, OCH₂CH₂OCH₃), 3.07 (d, *J* = 21.7 Hz, 4H, Ar¹CH₂P), 2.48 (t, 2H, *J* = 6.6 Hz, Ar²OCH₂CH₂OOC(CH₃)₃), 1.42 (s, 9H, Ar²OCH₂CH₂COOC(CH₃)₃), 1.22 (t, *J* = 7.0 Hz, 12H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 170.9 (COO(CH₃)₃), 167.1 (NHCO), 157.5 (Ar), 152.4 (Ar), 141.6 (Ar), 133.2 (*J* = 6.0 Hz) (Ar), 129.4 (Ar), 124.1 (Ar), 114.6 (*J* = 5.0 Hz) (Ar), 107.3 (Ar), 80.4 (*C*(CH₃)₃), 72.2 (PEG), 71.9 (PEG), 70.7 (PEG), 70.6 (PEG), 70.55 (PEG), 70.5 (PEG), 70.4 (PEG), 70.3 (PEG), 69.7 (PEG), 69.1 (PEG), 66.8 (OCH₂CH₂NH), 66.6 (CH₂CH₂COO), 62.1 (*J* = 7.0 Hz) (CH₂CH₃), 16.4 (*J* = 6.0 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.06. MS (MALDI-TOF) m/z calculated for C₆₆H₁₁₇NaNO₂₉P₂: 1472.72, obtained: 1472.65.

Compound 39: Starting from **34** (0.11 g, 0.07 mmol), compound **39** was obtained (0.05 mmol, 70%) as a colourless oil after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 90:10). ¹H NMR (300 MHz, CDCl₃) δ 7.23 (t, J = 5.5 Hz, 2H, Ar²OCH₂CH₂NH), 7.17-7.10 (m, 5H, Ar³-2,6-H and Ar²-4-H), 7.02 (d, J = 1.7 Hz, 2H, Ar²-2,6-H), 6.80-6.75 (m, 3H, Ar¹-2,4,6-H), 6.64 (t, J = 5.3 Hz, 1H, Ar¹OCH₂CH₂NH), 4.22-4.10 (m, 18H, Ar¹OCH₂CH₂NH, Ar²OCH₂CH₂NH and Ar³OCH₂CH₂OH, 4.05-3.95 (m, 8H, J = 7.0 Hz, PO(OCH₂CH₃)₂), 3.85-3.75 (m, 18H, Ar¹OCH₂CH₂NH, Ar²OCH₂CH₂OH, and OCH₂CH₂OH, 3.06 (d, J = 21.7 Hz, 4H, Ar¹CH₂P), 2.48 (t, 4H, J = 6.6 Hz, Ar³OCH₂CH₂COOC(CH₃)₃), 1.43 (s, 18H, Ar²OCH₂CH₂COOC(CH₃)₃), 1.24 (t, J = 7.0 Hz, 12H, PO(OCH₂CH₃)₂) δ 170.9 (COO(CH₃)₃), 167.1 (NHCO), 159.8 (Ar),

152.4 (Ar), 141.2 (Ar), 136.3 (Ar), 133.0 (Ar), 129.3 (Ar), 114.7 (Ar), 107.8 (Ar), 106.0 (Ar), 104.8 (Ar), 80.5 (*C*(CH₃)₃), 72.2 (PEG), 72.0 (PEG), 70.7 (PEG), 70.6 (PEG), 70.55 (PEG), 70.5 (PEG), 70.4 (PEG), 70.3 (PEG), 69.6 (PEG), 69.0 (PEG), 66.8 (OCH₂CH₂NH), 66.6 (*C*H₂CH₂COO), 62.1 (*J* = 6.5 Hz) (*C*H₂CH₃), 58.9 (OCH₃), 39.4 (*C*H₂NHCOAr), 36.2 (*C*H₂COO), 33.8 (*J* = 137.2 Hz) (*C*H-P), 28.1 (*C*(CH₃)₃), 16.4 (*J* = 6.0 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.08. MS (MALDI-TOF) m/z calculated for C₁₂₅H₂₁₅NaN₃O₅₄P₂: 2707.36, obtained: 2707.14.

1.4.General procedure for the Williamson ^[33] etherification with propargyl bromide (44-48)

A solution of phenolic (12, 28, 30, 32, 34), propargyl bromide (80% in xylene) (1.2 equiv. per phenol) and K_2CO_3 (3 equiv. per phenol) in acetone (10 mL) was stirred during 2 hrs at 65°C. The reaction mixture was filtered over Celite and the solvent was evaporated. The resulting crude product was diluted in CH₂Cl₂ (30 mL), washed twice with an aqueous saturated solution of NaHCO₃ and with brine, dried over MgSO₄, filtered and evaporated to dryness. The crude product was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5).

Compound 44: Starting from **12** (0.30 g, 0.46 mmol), **44** was obtained (0.36 mmol, 79%) as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 6.54 (d, J = 2.5 Hz, 2H, Ar-2,6-*H*), 4.68 (d, J = 2.3 Hz, 2H, OCH₂CCH), 4.16 (t, J = 4.8 Hz, 4H, ArOCH₂), 4.04-3.93 (m, 4H, PO(OCH₂CH₃)₂), 3.85 (t, J = 4.8 Hz, 4H, OCH₂CH₂O), 3.75-3.62 (m, 20H, OCH₂CH₂O), 3.55-3.52 (m, 4H, OCH₂CH₂O), 3.33 (s, 6H, OCH₂CH₂OCH₃), 3.04 (d, J = 21.5 Hz, 2H, Ar¹CH₂P), 2.43 (t, J = 2.3 Hz, 1H, OCH₂CCH), 1.24 (t, J = 7.0 Hz, 6H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 152.6 (J = 3.3 Hz) (Ar), 135.8 (J = 3.8 Hz) (Ar), 128.4 (J = 8.8 Hz) (Ar), 109.0 (J = 6.6 Hz) (Ar), 79.8 (CH₂CCH), 74.9 (CH₂CCH), 71.8 (PEG), 70.8 (PEG), 70.7 (PEG), 70.6 (PEG), 70.5 (PEG), 69.5 (PEG), 68.9 (PEG), 62.2 (J = 7.1 Hz) (CH₂CH₃), 59.7 (CH₂CCH), 59.0 (OCH₃), 33.7 (J = 139.8 Hz) (CH-P), 16.4 (J = 6.0 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.22. MS (MALDI-TOF) m/z calculated for C₃₂H₅₅O₁₄P: 695.33, obtained: 695.23, calculated for C₃₂H₅₄NaO₁₄P: 717.33 obtained: 717.22, calculated for C₃₂H₅₃NaKO₁₄P: 757.33 obtained: 757.27.

Compound 45: Starting from **28** (0.15 g, 0.18 mmol), **45** was obtained (0.16 mmol, 89%) was a colourless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.20 (dd, J = 2.6 and 8.3 Hz, 2H, Ar¹-2,6-*H*), 7.11 (s, 2H, Ar²-2,6-*H*), 6.88-6.83 (m, 3H, Ar¹OCH₂CH₂N*H* and Ar¹-3,5-*H*), 4.78 (d, J = 2.4 Hz, 2H, OCH₂CCH), 4.22 (t, 4H, J = 4.7 Hz Ar²OCH₂CH₂O), 4.12 (t, 2H, J = 5.2 Hz, Ar¹OCH₂CH₂NH), 4.05-3.95 (m, 4H, PO(OCH₂CH₃)₂), 3.78-3.88 (m, 6H, Ar¹OCH₂CH₂NH and OCH₂CH₂O), 3.72-3.50 (m, 24H, OCH₂CH₂O), 3.34 (s, 6H, OCH₂CH₂OCH₃), 3.06 (d, J = 21.3 Hz, 2H, Ar¹CH₂P), 2.43 (t, J = 2.4 Hz, 1H, OCH₂CCH), 1.24 (t, J = 7.0 Hz, 6H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 167.1 (NHCO), 157.4 (J = 3.7 Hz) (Ar), 152.5 (Ar), 139.4 (Ar), 130.8 (J = 6.6 Hz) (Ar), 130.0 (Ar), 123.8 (J = 9.3 Hz) (Ar), 114.5 (J = 3.3 Hz) (Ar), 107.1 (Ar), 79.2 (CH₂CCH), 74.9 (CH₂CCH), 71.9 (PEG), 70.7 (PEG), 70.6 (PEG), 70.55 (PEG), 70.45 (PEG), 70.4 (PEG), 69.6 (PEG), 69.1 (PEG), 66.8 (OCH₂CH₂NH), 62.1 (J = 7.1 Hz) (CH₂CH₃), 59.8 (CH₂CCH), 58.8 (OCH₃), 39.6 (CH₂NHCOAr), 32.9 (J = 139.4 Hz) (CH-P), 16.3 (J = 6.0 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.58. MS (MALDI-TOF) m/z calculated for C₄₁H₆₅NO₁₆P: 858.40, obtained: 858.32; MS (MALDI-TOF) m/z calculated for C₄₁H₆₅NO₁₆P: 880.40.

Compound 46: Starting from **32** (0.2 g, 0.14 mmol), **46** was obtained (0.12 mmol, 85%) as a colourless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.09 (s, 4H, Ar²-2,6-*H*), 6.93 (t, *J* = 5.6 Hz, 2H, Ar¹OCH₂CH₂N*H*), 6.51 (m, 2H, Ar¹-2,6-*H*), 6.41 (m, 1H, Ar¹-4-*H*), 4.78 (d, *J* = 2.5 Hz, 4H, OCH₂CCH), 4.22-4.18 (t, *J* = 4.5 Hz, 8H, Ar²OCH₂), 4.11 (t, *J* = 5.3 Hz, 4H, Ar¹OCH₂CH₂NH), 4.05-3.95 (m, 4H, PO(OCH₂CH₃)₂), 3.88-3.84 (t, *J* = 4.5 Hz, 8H, Ar²OCH₂), 3.78 (q, *J* = 5.3 Hz, 4H, Ar¹OCH₂CH₂NH), 3.68-3.52 (m, 40H, OCH₂CH₂O), 3.50-3.45 (m, 8H, OCH₂CH₂O), 3.33 (s, 12H, OCH₂CH₂OCH₃), 3.05 (d, *J* = 21.5 Hz, 2H, Ar¹CH₂P), 2.46 (t, *J* = 2.4 Hz, 2H, OCH₂CCH), 1.25 (t, *J* = 7.1 Hz, 6H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 167.2 (NHCO), 159.7 (Ar), 152.6 (Ar), 139.5 (Ar), 133.9 (*J* = 8.2 Hz) (Ar), 130.1 (Ar), 108.7 (*J* = 6.6 Hz) (Ar), 106.9 (Ar), 101.1 (Ar), 79.2 (CH₂CCH), 75.2 (CH₂CCH), 71.7 (PEG), 70.7 (PEG), 70.55 (PEG), 70.5 (PEG), 70.45 (PEG), 70.4 (PEG), 69.6 (PEG), 69.2 (PEG), 66.8 (OCH₂CH₂NH), 62.3 (*J* = 7.1 Hz) (CH₂CH₃), 60.0 (CH₂CCH),

58.9 (OCH₃), 39.5 (CH₂NHCOAr), 33.4 (J = 138.3 Hz) (CH-P), 16.4 (J = 6.0 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.12. MS (MALDI-TOF) m/z calculated for C₇₁H₁₁₂N₂O₂₉P: 1487.70, obtained: 1487.70; calculated for C₇₁H₁₁₂NaN₂O₂₉P: 1509.70, obtained: 1509.68.

Compound 47: Starting from **30** (0.37 g, 0.38 mmol), **47** was obtained (0.35 mmol, 91%) as a colourless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.08 (s, 2H, Ar²-2,6-*H*), 7.02 (t, *J* = 5.6 Hz, 1H, Ar¹OCH₂CH₂N*H*), 6.78 (m, 1H, Ar¹-2-*H*), 6.72 (m, 2H, Ar¹-4,6-*H*), 4.78 (d, *J* = 2.4 Hz, 2H, OCH₂CCH), 4.25-4.20 (t, *J* = 4.7 Hz, 4H, Ar²OCH₂), 4.15-4.10 (t, *J* = 5.0 Hz, 2H, Ar¹OCH₂CH₂NH), 4.10-3.95 (m, 8H, *J* = 7.0 Hz, PO(OCH₂CH₃)₂), 3.82 (t, 4H, *J* = 4.7 Hz, OCH₂CH₂O), 3.78 (q, 2H, *J* = 5.3 Hz, Ar¹OCH₂CH₂NH), 3.68-3.50 (m, 20H, OCH₂CH₂O), 3.55-3.51 (m, 4H, OCH₂CH₂O), 3.35 (s, 6H, OCH₂CH₂OCH₃), 3.08 (d, *J* = 22.0 Hz, 4H, Ar¹CH₂P), 2.44 (t, *J* = 2.4 Hz, 1H, OCH₂CCH), 1.24 (t, *J* = 7.1 Hz, 12H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 167.1 (NHCO), 158.5 (*J* = 2.8 Hz) (Ar), 152.7 (Ar), 139.5 (Ar), 133.1 (*J* = 6.0 Hz) (Ar), 130.2 (Ar), 124.0 (*J* = 6.8 Hz) (Ar), 114.6 (*J* = 5.0 Hz) (Ar), 107.0 (Ar), 79.2 (CH₂CCH), 74.9 (CH₂CCH), 71.8 (PEG), 70.65 (PEG), 70.55 (PEG), 70.5 (PEG), 70.4 (PEG), 70.35 (PEG), 69.6 (PEG), 69.0 (PEG), 66.6 (OCH₂CH₂NH), 62.1 (*J* = 6.6 Hz) (CH₂CH₃), 59.8 (CH₂CCH), 58.9 (OCH₃), 39.5 (CH₂NHCOAr), 33.8 (*J* = 137.8 Hz) (CH-P), 16.4 (*J* = 2.7 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.08. MS (MALDI-TOF) m/z calculated for C₄₆H₇₅NaNO₁₉P₂: 1030.44, obtained: 1030.41.

Compound 48: Starting from 34 (0.29 g, 0.17 mmol), 48 was obtained (0.15 mmol, 86%) as a colourless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.18 (t, J = 5.7 Hz, 2H, Ar²OCH₂CH₂NH), 7.11 (s, 4H, $Ar^{3}-2,6-H$, 7.02 (t, J = 5.5 Hz, 1H, $Ar^{1}OCH_{2}CH_{2}NH$), 6.95 (d, J = 1.7 Hz, 2H, $Ar^{2}-2,6-H$), 6.78-6.71 (m, 3H, Ar^2 -2,4,6-*H*), 6.58 (t, J = 1.9 Hz, 1H, Ar^2 -4-*H*), 4.78 (d, J = 2.4 Hz, 4H, OCH₂CCH), 4.17 (t, J= 4.6 Hz, 8H, Ar^2OCH_2), 4.15-4.10 (m, 6H, $Ar^1OCH_2CH_2NH$ and $Ar^2OCH_2CH_2NH$), 4.05-3.93 (m, 8H, PO(OCH₂CH₃)₂), 3.85-3.75 (m, 14H, OCH₂CH₂O, Ar¹OCH₂CH₂NH and Ar²OCH₂CH₂NH), 3.70-3.60 (m, 34H, OCH₂CH₂O), 3.53-3.48 (m, 8H, OCH₂CH₂O), 3.34 (s, 12H, OCH₂CH₂OCH₃), 3.06 (d, J = 22.0 Hz, 4H, Ar¹CH₂P), 2.45 (t, J = 2.4 Hz, 2H, OCH₂CCH), 1.23 (t, J = 7.0 Hz, 12H, PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 167.2 (NHCO), 159.8 (Ar), 158.5 (Ar), 152.6 (Ar), 139.8 (Ar), 136.6 (Ar), 133.1 (J = 6.0 Hz) (Ar), 130.1 (Ar), 124.2 (Ar), 114.8 (J = 4.8 Hz) (Ar), 107.2 (Ar), 106.1 (Ar), 104.8 (Ar), 79.2 (CH₂CCH), 75.1 (CH₂CCH), 71.9 (PEG), 70.7 (PEG), 70.6 (PEG), 70.55 (PEG), 70.5 (PEG), 70.45 (PEG), 70.4 (PEG), 69.7 (PEG), 69.1 (PEG), 66.8 (OCH₂CH₂NH), 62.1 (*J* = 7.0 Hz) (*C*H₂CH₃), 60.0 (*C*H₂CCH), 58.9 (OCH₃), 39.5 (*C*H₂NHCOAr), 33.5 (*J* = 137.5 Hz) (CH-P), 16.3 (J = 2.7 Hz) (CH₂CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.18. MS (MALDI-TOF) m/z calculated for C₈₅H₁₃₂N₃O₃₄P₂: 1800.81, obtained: 1800.68; calculated for C₈₅H₁₃₁NaN₃O₃₄P₂: 1822.81, obtained: 1822.67.

Compound 49: A solution of Patent Blue VF (5.7 g, 10.0 mmol) in POCl₃ (19 ml, 200 mmol, 20.0 equiv.) was cooled at 0°C. After 1 hr of stirring, the solution was allowed to warm up to room temperature and was further stirred for 3 days. The reaction mixture was then added dropwise to an ice bath. The obtained aqueous phase was extracted three times with CH_2Cl_2 (200 mL) and the resulting organic phase was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Sulfonylchloride derivative **49** was obtained as a dark green foam (9.0 mmol, 90%) and was directly used without further purification.

Compound 50: Azido-dPEGTM₇-amine (0.7 g, 1.77 mmol) was dissolved, under an argon atmosphere, in CH₂Cl₂ (6 mL) followed by the addition of NEt₃ (718 μ L, 5.32 mmol, 3.0 equiv.) and 4-DMAP (22 mg, 0.1 mmol). The resulting mixture was stirred at 0°C for 15 min. Patent Blue VF sulfonyl chloride **49** (1.5 g, 2.66 mmol, 1.5 equiv.) dissolved in a mixture of CH₂Cl₂/DMF (10 mL / 1.5 mL) was then added dropwise. The solution was allowed to warm up to room temperature and stirred overnight. The crude reaction mixture was concentrated under reduced pressure and purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 90:10) to afford **50** (0.89 mmol, 50%) as a dark blue foam. ¹H NMR (300 MHz, CD₂Cl₂) δ 8.57 (d, *J* = 1.9 Hz, 1H, Ar¹-2-*H*), 7.87 (dd, *J* = 1.9 and 7.9 Hz, 1H, Ar¹-6-*H*), 7.45 (m, 4H, Ar²-2,6-*H*), 7.14 (d, *J* = 7.9 Hz, 1H, Ar¹-5-*H*), 6.80 (m, 4H, Ar²-3,5-*H*), 5.98 (t, *J* = 5.9 Hz, 1H, CH₂NHO₂), 3.66-3.55 (m, 36H, OCH₂CH₂O and N(CH₂CH₃)₂), 3.37 (t, *J* = 4.8 Hz, 2H,

CH₂CH₂N₃), 3.21 (q, J = 5.5 Hz, 2H, CH₂NHO₂), 1.29 (t, J = 7.1 Hz, 12H, N(CH₂CH₃)₂); ¹³C NMR (75 MHz, CD₂Cl₂) δ 176.4 (Ar), 155.7 (Ar=N), 149.4 (Ar), 142.3 (Ar), 141.3 (Ar), 141.0 (Ar), 132.0 (Ar), 127.5 (Ar), 126.9 (Ar), 113.5 (Ar), 71.1 (PEG), 70.9 (PEG), 70.4 (PEG), 70.0 (PEG), 51.3 (CH₂N₃), 46.4 (N(CH₂CH₃)₂), 43.7 (CH₂NH), 13.1 (N(CH₂CH₃)₂). MS (MALDI-TOF) m/z calculated for C₄₃H₆₅N₆O₁₂S₂: 921.41, obtained: 921.37; calculated for C₄₃H₆₄N₆NaO₁₂S₂: 943.39, obtained: 943.35; calculated for C₄₃H₆₄KN₆O₁₂S₂: 959.36, obtained: 959.33.

1.5.General procedure for the "Click chemistry" reaction with azide derivative 50 (51, 53, 55, 57, 59)

A 0.1 M aqueous solution of $CuSO_4.5H_2O$ (0.05 equiv. per azide) and a 0.1 M aqueous solution of sodium ascorbate (0.1 equiv. per azide) were added at room temperature to an equimolar solution of propargyl derivative (44-48) and azide 50 in a mixture of DMSO:H₂O 4:1 (8 mL). The reaction mixture was stirred at room temperature overnight. 20 mL of brine were then added to quench the reaction and the resulting aqueous phase was extracted several times with CH_2Cl_2 . The organic phase was dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography.

Compound 51: Starting from 44 (0.19 g, 0.27 mmol), 51 was obtained (0.14 mmol, 52%) as a dark blue foam after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 90:10). ¹H NMR (300 MHz, CDCl₃) δ 8.69 (d, J = 1.9 Hz, 1H, Ar^{dye}-2-H), 7.92 (s, 1H, Ar^{Triazole}-H), 7.81 (dd, J = 1.9 and 7.9 Hz, 1H, Ar^{dye} -6-H), 7.40 (d, 4H, J = 9.4 Hz, Ar^{dye} -AA'-H), 7.08 (d, J = 7.9 Hz, 1H, Ar^{dye} -5-H), 6.71 (d, 4H, J = 9.4 Hz, Ar^{dye} -BB'-H), 6.49 (d, J = 2.4 Hz, 2H, Ar^{1} -2,6-H), 5.82 (t, J = 5.8 Hz, 1H, CH₂NHO₂), 5.12 (s, 2H, OCH₂Ar^{Triazole}-CH₂), 4.48 (t, J = 5.2 Hz, 2H, OCH₂Ar^{Triazole}-CH₂), 4.10 (t, J = 4.8 Hz, 4H, Ar¹OCH₂CH₂), 4.00-3.92 (m, 4H, PO(OCH₂CH₃)₂), 3.82-3.75 (m, 6H, OCH₂CH₂O and CH₂CH₂NHO₂), 3.70-3.45 (m, 58H, OCH₂CH₂O and N(CH₂CH₃)₂), 3.31 (s, 6H, OCH₂CH₂OCH₃), 3.18 (q, J = 5.5 Hz, 2H, CH₂CH₂NHO₂), 3.01 (d, J = 21.5 Hz, 2H, Ar¹CH₂P), 1.22 (t, J = 7.1 Hz, 18H, N(CH₂CH₃)₂ and PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 176.2 (Ar), 155.1 (Ar^{dye}=N), 152.5 (Ar), 148.7 (Ar), 144.9 (Ar), 141.8 (Ar^{Triazole}), 141.1 (Ar), 140.6 (Ar), 136.6 (Ar), 131.2 (Ar), 127.3 (Ar^{Triazole}), 127.2 (Ar), 127.1 (Ar), 126.3 (Ar), 124.2 (Ar), 113.0 (Ar), 109.1 (Ar), 71.9 (OCH₂-Ar^{Triazole}), 70.8 (PEG), 70.7 (PEG), 70.6 (PEG), 70.5 (PEG), 70.4 (PEG), 69.7 (PEG), 68.6 (PEG), 62.1 (CH_2CH_3) , 58.9 (OCH₃), 50.1 (Ar^{Triazole}-CH₂), 45.8 (N(CH₂CH₃)₂), 42.9 (CH₂NHSO₂), 33.8 (J = 138.5) Hz) (CH-P), 16.4 (J = 5.5 Hz) (CH₂CH₃), 12.8 (N(CH₂CH₃)₂). ³¹P NMR (81 MHz, CDCl₃) δ 26.23. MS (MALDI-TOF) m/z calculated for C75H120N6O26PS2: 1615.74, obtained: 1615.59; calculated for C C₇₅H₁₁₉NaN₆O₂₆PS₂: 1637.74, obtained: 1637.59.

Compound 53: Starting from 45 (0.12 g, 0.14 mmol), 53 was obtained (0.1 mmol, 68%) as a dark blue foam after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 90:10). ¹H NMR (300 MHz, CDCl₃) δ 8.74 (d, J = 1.8 Hz, 1H, Ar^{dye}-2-H), 7.94 (s, 1H, Ar^{Triazole}-H), 7.89 (dd, J = 1.8 and 7.9 Hz, 1H, Ar^{dye}-6-H), 7.58 (t, 1H, J = 5.3 Hz, Ar¹OCH₂CH₂NH), 7.41 (d, 4H, J = 9.2 Hz, Ar^{dye}-AA'-H), 7.19-7.08 (m, 6H, Ar^{dye} -5-H, Ar^{1} -2,6-H and Ar^{2} -2,6-H), 6.83 (d, 2H, J = 8.5 Hz, Ar^{1} -3,5-H), 6.70 (d, 4H, J = 9.2 Hz, Ar^{dye} -BB'-H), 6.38 (t, J = 5.8 Hz, 1H, CH_2NHO_2), 5.22 (s, 2H, $OCH_2Ar^{Triazole}$ -CH₂), 4.49 (t, J = 5.1 Hz, 2H, OCH₂Ar^{Triazole}-CH₂), 4.17 (t, J = 4.8 Hz, 4H, Ar²OCH₂CH₂), 4.06 (t, 2H, J =5.1 Hz, Ar¹OCH₂CH₂NH), 4.00-3.92 (m, 4H, PO(OCH₂CH₃)₂), 3.85-3.78 (m, 8H, OCH₂CH₂O, Ar¹OCH₂CH₂NH and CH₂CH₂NHO₂), 3.70-3.45 (m, 58H, OCH₂CH₂O and N(CH₂CH₃)₂), 3.32 (s, 6H, $OCH_2CH_2OCH_3$), 3.22 (q, J = 5.5 Hz, 2H, $CH_2CH_2NHO_2$), 3.05 (d, J = 21.1 Hz, 2H, Ar^1CH_2P), 1.23 (t, J = 7.1 Hz, 18H, N(CH₂CH₃)₂ and PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 176.1 (Ar), 166.8 (NHCO), 157.9 (Ar), 155.0 (Ar^{dye}=N), 152.1 (Ar), 148.2 (Ar), 144.7 (Ar), 141.8 (Ar^{Triazole}), 141.0 (Ar), 140.6 (Ar), 139.5 (Ar), 138.2 (Ar), 131.1 (Ar), 130.5 (*J* = 6.6 Hz) (Ar), 129.6 (Ar), 127.1 (Ar^{Triazole}), 126.8 (Ar), 126.4 (Ar), 124.7 (Ar), 122.3 (Ar), 114.8 (Ar), 113.2 (Ar), 106.7 (Ar), 72.1 (OCH2-Ar^{Triazole}), 70.7 (PEG), 70.6 (PEG), 70.5 (PEG), 70.4 (PEG), 69.4 (PEG), 69.2 (PEG), 68.8 (PEG), 66.2 (OCH₂CH₂NH), 62.0 (J = 7.0 Hz) (CH₂CH₃), 58.9 (OCH₃), 50.3 (Ar^{Triazole}-CH₂), 45.6 $(N(CH_2CH_3)_2)$, 42.9 (CH_2NHSO_2) , 39.4 $(CH_2NHCOAr)$, 32.6 (J = 138.9 Hz) (CH-P), 16.5 (J = 6.0 Hz)Hz) (CH₂CH₃), 12.8 (N(CH₂CH₃)₂); ³¹P NMR (81 MHz, CDCl₃) δ 26.72. MS (MALDI-TOF) m/z calculated for $C_{84}H_{128}N_7O_{28}PS_2$: 1778.80, obtained: 1778.69; calculated for $C_{84}H_{128}NaN_7O_{28}PS_2$: 1800.80, obtained: 1800.65; calculated for $C_{84}H_{128}Na_2N_7O_{28}PS_2$: 1823.80, obtained: 1823.64.

Compound 55: Starting from 46 (0.1 g, 0.07 mmol), 55 was obtained (0.035 mmol, 50%) as a dark blue foam after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 85:15). ¹H NMR (300 MHz, CDCl₃) δ 8.68 (d, J = 1.4 Hz, 2H, Ar^{dye}-2-H), 7.97 (s, 2H, Ar^{Triazole}-H), 7.90 (dd, J = 1.6 and 8.1 Hz, 2H, Ar^{dye} -6-H), 7.78 (t, J = 5.7 Hz, 2H, $Ar^{2}OCH_{2}CH_{2}NH$), 7.40-7.34 (d, 8H, J = 9.2 Hz, Ar^{dye} -AA'-H), 7.17 (s, 4H, Ar²-2,6-H), 7.11 (d, 2H, J = 8.0 Hz, Ar^{dye}-5-H), 6.65 (d, 8H, J = 9.2 Hz, Ar^{dye}-BB'-*H*), 6.40-6.35 (m, 3H, Ar¹-2,4,6-*H*), 6.25 (t, J = 5.7 Hz, 2H, CH₂NHO₂), 5.22 (s, 4H, OCH₂Ar^{Triazole}-CH₂), 4.51 (t, J = 5.0 Hz, 4H, OCH₂Ar^{Triazole}-CH₂), 4.17 (t, J = 4.7 Hz, 8H, Ar²OCH₂CH₂), 4.05-3.95 (m, 8H, Ar¹OCH₂CH₂NH, and PO(OCH₂CH₃)₂), 3.88-3.80 (m, 14H, OCH_2CH_2O , $Ar^1OCH_2CH_2NH$ and $CH_2CH_2NHO_2$), 3.72-3.40 (m, 116H, OCH_2CH_2O and N(CH₂CH₃)₂), 3.35 (s, 12H, OCH₂CH₂OCH₃), 3.20 (m, 4H, CH₂CH₂NHO₂), 3.02 (d, J = 21.5 Hz, 2H, Ar¹CH₂P), 1.25 (t, J = 7.0 Hz, 30H, N(CH₂CH₃)₂ and PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 175.3 (Ar), 166.8 (NHCO), 159.9 (Ar), 155.0 (Ar^{dye}=N), 152.3 (Ar), 148.2 (Ar), 144.5 (Ar), 142.1 (Ar^{Triazole}), 140.8 (Ar), 140.3 (Ar), 139.6 (Ar), 133.2 (Ar), 131.4 (Ar), 129.6 (Ar), 127.1 (Ar^{Triazole}), 126.9 (Ar), 126.6 (Ar), 124.8 (Ar), 113.2 (Ar), 109.1 (Ar), 106.8 (Ar), 71.8 (OCH₂-Ar^{Triazole}), 70.7 (PEG), 70.6 (PEG), 70.55 (PEG), 70.5 (PEG), 70.45 (PEG), 70.4 (PEG), 69.5 (PEG), 69.3 (PEG), 68.6 (PEG), 66.3 (OCH₂CH₂NH), 62.2 (J = 7.1 Hz) (CH₂CH₃), 58.9 (OCH₃), 50.2 (Ar^{Triazole}-CH₂), 45.8 $(N(CH_2CH_3)_2)$, 43.1 (CH_2NHSO_2) , 39.3 $(CH_2NHCOAr)$, 33.4 (J = 137.5 Hz) (CH-P), 16.3 (J = 6.0 Hz)Hz) (CH₂CH₃), 12.8 (N(CH₂CH₃)₂); ³¹P NMR (81 MHz, CDCl₃) δ 26.24. MS (MALDI-TOF) m/z calculated for C₁₅₇H₂₃₉N₁₄O₅₃PS₄: 3329.87, obtained: 3329.28.

Compound 57: Starting from 47 (0.29 g, 0.29 mmol), 57 was obtained (0.26 mmol, 88%) as a dark blue foam after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 85:15). ¹H NMR (300 MHz, CDCl₃) δ 8.73 (d, J = 1.7 Hz, 1H, Ar^{dye}-2-H), 7.95 (s, 1H, Ar^{Triazole}-H), 7.89 (dd, J = 1.8 and 7.9 Hz, 1H, Ar^{dye} -6-H), 7.42 (d, 4H, J = 9.2 Hz, Ar^{dye} -AA'-H), 7.15 (s, 2H, Ar^2 -2,6-H), 7.11 (d, 1H, J = 8.1Hz, Ar^{dye} -5-H), 6.80 (m, 1H, Ar^{1} -2-H), 6.76 (m, 2H, Ar^{1} -4,6-H), 6.70 (d, 4H, J = 9.2 Hz, Ar^{dye} -BB'-H), 6.18 (t, J = 5.8 Hz, 1H, CH₂NHO₂), 5.22 (s, 2H, OCH₂Ar^{Triazole}-CH₂), 4.52 (t, J = 5.2 Hz, 2H, OCH₂Ar^{Triazole}-CH₂), 4.19 (t, J = 5 Hz, 4H, Ar²OCH₂CH₂), 4.08 (t, 2H, J = 5.0 Hz, Ar¹OCH₂CH₂NH), 4.05-3.95 (m, 8H, PO(OCH₂CH₃)₂), 3.88-3.82 (m, 8H, OCH₂CH₂O, Ar¹OCH₂CH₂NH and CH₂CH₂NHO₂), 3.70-3.45 (m, 58H, OCH₂CH₂O and N(CH₂CH₃)₂), 3.34 (s, 6H, OCH₂CH₂OCH₃), $3.22 (q, J = 5.3 Hz, 2H, CH_2CH_2NHO_2), 3.07 (d, J = 21.7 Hz, 4H, Ar^1CH_2P), 1.25 (t, J = 7.1 Hz, 24H),$ $N(CH_2CH_3)_2$ and $PO(OCH_2CH_3)_2$; ¹³C NMR (75 MHz, CDCl₃) δ 176.1 (Ar), 166.8 (NHCO), 158.9 (Ar), 155.1 (Ar^{dye}=N), 152.3 (Ar), 148.9 (Ar), 142.1 (Ar^{Triazole}), 140.9 (Ar), 140.5 (Ar), 133.2 (Ar), 131.4 (Ar), 129.8 (Ar), 127.6 (Ar), 127.4 (Ar^{Triazole}), 126.3 (Ar), 124.8 (Ar), 123.8 (Ar), 114.6 (Ar), 113.1 (Ar), 106.9 (Ar), 72.0 (OCH₂-Ar^{Triazole}), 70.7 (PEG), 70.6 (PEG), 70.5 (PEG), 70.4 (PEG), 69.4 (PEG), 68.9 (PEG), 66.3 (OCH₂CH₂NH), 62.2 (CH₂CH₃), 58.8 (OCH₃), 50.4 (Ar^{Triazole}-CH₂), 46.1 $(N(CH_2CH_3)_2)$, 43.2 (CH_2NHSO_2) , 39.4 $(CH_2NHCOAr)$, 33.3 (J = 137.5 Hz) (CH-P), 16.4 (CH_2CH_3) , 12.8 (N(CH₂CH₃)₂); ³¹P NMR (81 MHz, CDCl₃) δ 26.60. MS (MALDI-TOF) m/z calculated for C₈₉H₁₄₀N₇O₃₁P₂S₂: 1928.84, obtained: 1928.70; calculated for C₈₉H₁₃₉NaN₇O₃₁P₂S₂: 1950.84, obtained: 1950.71.

Compound 59: Starting from **48** (0.25 g, 0.14 mmol), **59** was obtained (0.07 mmol, 50%) as a dark blue foam after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 85:15). ¹H NMR (300 MHz, CDCl₃) δ 8.68 (d, J = 1.4 Hz, 2H, Ar^{dye}-2-*H*), 7.95 (s, 2H, Ar^{Triazole}-*H*), 7.88 (dd, J = 1.7 and 8.1 Hz, 2H, Ar^{dye}-6-*H*), 7.82 (t, J = 5.7 Hz, 2H, Ar²OCH₂CH₂N*H*), 7.30-7.22 (d, 8H, J = 9.2 Hz, Ar^{dye}-AA'-*H*), 7.14 (s, 4H, Ar³-2,6-*H*), 7.07 (d, 2H, J = 8.0 Hz, Ar^{dye}-5-*H*), 6.97 (m, 2H, Ar²-2,6-*H*), 6.58 (m, 1H, Ar²-4-*H*),), 6.64 (t, J = 5.7 Hz, 2H, CH₂N*H*O₂), 6.62-6.55 (m, 3H, Ar¹-2,4,6-*H*), 6.52 (d, 8H, J = 9.2 Hz, Ar^{dye}-BB'-*H*), 6.43 (m, 1H, Ar¹OCH₂CH₂N*H*), 5.18 (s, 4H, OCH₂Ar^{Triazole}-CH₂), 4.47 (t, J = 5.0 Hz, 4H, OCH₂Ar^{Triazole}-CH₂), 4.12 (m, 8H, Ar²OCH₂CH₂), 4.05-3.87 (m, 14H, Ar¹OCH₂CH₂NH and Ar²OCH₂CH₂NH), 3.68-3.33 (m, 120H, OCH₂CH₂O, CH₂CH₂NHO₂ and N(CH₂CH₃)₂), 3.28 (s, 12H, OCH₂CH₂OCH₃), 3.12 (q, J = 5.4 Hz, 4H, CH₂CH₂NHO₂), 2.98 (d, J = 21.7 Hz, 4H, Ar¹CH₂P), 1.13 (t, J = 7.0 Hz, 36H, N(CH₂CH₃)₂ and PO(OCH₂CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 174.2 (Ar),

166.8 (*J* = 7.7 Hz) (NHCO), 159.6 (Ar), 158.8 (Ar), 154.8 (Ar^{dye}=N), 152.3 (Ar), 147.9 (Ar), 144.6 (Ar), 142.2 (Ar^{Triazole}), 140.6 (Ar), 139.4 (Ar), 136.1 (Ar), 133.2 (*J* = 12 Hz) (Ar), 131.6 (Ar), 129.4 (Ar), 127.1 (Ar^{Triazole}), 126.9 (Ar), 124.8 (Ar), 123.8 (Ar), 114.7 (Ar), 113.2 (Ar), 106.6 (Ar), 105.9 (Ar), 105.2 (Ar), 71.8 (OCH₂-Ar^{Triazole}), 70.7 (PEG), 70.6 (PEG), 70.55 (PEG), 70.5 (PEG), 70.45 (PEG), 69.5 (PEG), 68.7 (PEG), 66.3 (OCH₂CH₂NH), 62.2 (*J* = 7.1 Hz) (CH₂CH₃), 58.8 (OCH₃), 50.2 (Ar^{Triazole}-CH₂), 45.8 (N(CH₂CH₃)₂), 43.0 (CH₂NHSO₂), 39.3 (CH₂NHCOAr), 33.4 (*J* = 137.5 Hz) (CH-P), 16.4 (*J* = 6.0 Hz) (CH₂CH₃), 12.7 (N(CH₂CH₃)₂); ³¹P NMR (81 MHz, CDCl₃) δ 26.08. MS (MALDI-TOF) m/z calculated for C₁₇₁H₂₅₉N₁₅O₅₈P₂S₄: 3643.16, obtained: 3643.78.

2.Part II: PAMAM-PEG dendrons

Compound 61: A solution of sodium trimethylsilanolate (TMSONa, 1 M) in CH₂Cl₂ (66 mL, 66 mmol) was added to a solution of G0.5 PAMAM dendron (5 g, 22 mmol) in CH₂Cl₂ (90 mL). The mixture was stirred for 16 hrs at room temperature. The solvent was then evaporated *in vacuo* and the residue was precipitated in EtOAc. The solid was filtered and **61** was obtained (22 mmol, quant). Yellow solid. Melting point: 250°C. ¹H NMR (300 MHz, D₂O) δ 3.36 (s, 2H, CH₂ alkyne), 2.38 (dd, 4H, *J* = 10.6 Hz and 11.9 Hz, NCH₂), 1.63 (dd, 4H, *J* = 12.2 Hz and 10.6 Hz, CH₂COONa), 0.84 (s, 1H, CH alkyne); ¹³C NMR (75 MHz, D₂O) δ 181.1 (COO), 77.9 (C alkyne), 74.5 (CH alkyne), 49.7 (NCH₂), 41.1 (alkyne-CH₂), 34.9 (CH₂COONa). MS (MALDI-TOF) m/z calculated for C₉H₁₁NNa₂O₄ 243.05, obtained [M-H]⁻ = 242.28.

Compound 62: TBDPSCl (1.6 mL, 6.27 mmol) was added to a solution of amino-dPEG[®]₄-alcohol (1.05 g, 5.45 mmol) and imidazole (0.85 g, 12.5 mmol) in CH₂Cl₂ (35 mL). The mixture was stirred for 3 hrs at room temperature and then diluted with CH₂Cl₂ (20 mL). The resulting mixture was washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH/NH₄OH 80:20:0.25) to yield **62** (4.3 mmol, 80%). Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.68 (m, 4H, Ar), 7.40 (m, 6H, Ar), 3.83 (dd, 2H, *J* = 4.2 Hz and 4.6 Hz, CH₂OSi), 3.68-3.60 (m, 10H, PEG), 3.51 (dd, 2H, *J* = 4.2 Hz, *J* = 4.4 Hz, H₂NCH₂CH₂O), 2.83 (dd, 2H, *J* = 4.4 Hz and 4.2 Hz, NH₂CH₂), 1.06 (s, 9H, *t*Bu); ¹³C NMR (75 MHz, CDCl₃) δ 135.5 (Ar), 133.6 (Ar), 129.6 (Ar), 127.6 (Ar), 72.5 and 72.4 (*C*H₂CH₂OSi, H₂NCH₂CH₂), 70.7 (PEG), 70.5 (PEG), 70.2 (PEG), 63.4 (CH₂OSi), 41.4 (C^{IV} *t*Bu), 26.8 (CH₃ *t*Bu), 19.1 (H₂NCH₂). MS (MALDI-TOF) m/z calculated for C₂₄H₃₇NO₄Si 431.25, obtained [M+H]⁺ = 432.21.

Compound 63: N,N'-Diisopropylcarbodiimide (DIC, 1.2 mL, 7.54 mmol) and HOBt (1.02 g, 7.54 mmol) were added to a solution of **61** (0.46 g, 1.88 mmol) and **62** (1.63 g, 3.77 mmol) in DMF (7 mL). The mixture was stirred at 60°C for 24 hrs then quenched at room temperature with an ammonium chloride aqueous saturated solution. The aqueous phase was extracted with ether and the organic phase was dried over MgSO₄, filtered and concentrated *in vacuo*. The crude mixture was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5) to yield **63** (1.33 mmol, 70%). Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.66 (d, 8H, Ar), 7.40 (m, 12H, Ar), 3.80 (dd, 4H, *J* = 2.49 Hz and 2.46 Hz, CH₂OSi), 3.66-3.39 (m, 30H, PEG, CH₂ alkyne), 2.80 (dd, 4H, *J* = 6.36 Hz and 6.12 Hz, CONHCH₂), 2.30 (dd, 4H, *J* = 6.36 Hz and 6.36 Hz, CH₂CONH), 2.17 (dd, 1H, *J* = 2 Hz and 1.8 Hz, H alkyne), 1.04 (s, 18H, *t*Bu); ¹³C NMR (75 MHz, CDCl₃) δ 172.1 (CONH), 135.4 (Ar TBDPS), 133.4 (Ar TBDPS), 129.5 (Ar TBDPS), 127.5 (Ar TBDPS), 77.2 (C alkyne), 73.4 (CH alkyne), 71.9 (OCH₂CH₂OTBDPS), 48.8 (NCH₂ PAMAM), 40.7 (CH₂N next to alkyne), 38.6 (C^{IV} *t*Bu), 38.4 (CONHCH₂), 33.0 (CH₂CONH), 26.1 (*t*Bu); MS (MALDI-TOF) m/z calculated for C₅₇H₈₃N₃O₁₀Si₂ 1025.56, obtained [M+H]⁺ = 1026.52.

Compound 64: amino-dPEG \mathbb{R}_3 -*tert* butylester is a commercially available product purchased from Quanta Design.

Compound 65: N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDCI, 0.38 g, 1.97 mmol), HOBt (0.05 g, 0.33 mmol) and DIPEA (0.31 mL, 1.8 mmol) were added to a suspension of **61** (0.2 g, 0.82 mmol) and **64** (0.58 g, 1.8 mmol) in CH₃CN (9 mL). The mixture was stirred at room

temperature for 16 h and then the solvent was evaporated. The crude mixture was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 90:10) to yield **65** (1.05 mmol, 67%) as yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.38 (m, 2H, NH), 3.70-3.42 (m, 34H, CH₂O PEG, CH₂ alkyne), 3.39 (m, 4H, NCH₂ PAMAM), 2.81 (dd, 4H, *J* = 6.36 Hz and 6.36 Hz, CONHCH₂CH₂O), 2.48 (dd, 4H, *J* = 6.57 Hz and 6.57 Hz, NCH₂CH₂CONH PAMAM), 2.36 (dd, 4H, *J* = 6.12 and 6.36 Hz, 2 CH₂COOtBu), 2.23 (dd, 1H, *J* = 2.2 Hz and 2.4 Hz, H alkyne), 1.45 (s, 18H, 2 tBu); ¹³C NMR (75 MHz, CDCl₃) δ 171.9 (CONH), 170.8 (COOtBu), 80.5 (C^{IV} tBu), 77.8 (C Alkyne), 73.6 (CH Alkyne), 70.6 (PEG), 70.5 (PEG), 70.4 (PEG), 70.3 (PEG), 70.2 (PEG), 69.9 (PEG), 66.8 (OCH₂CH₂COOtBu), 49.5 (NCH₂CH₂), 41.5 (Alkyne-CH₂), 39.1 (CONHCH₂CH₂O), 36.2 (CH₂COOtBu), 33.9 (CH₂CONH), 27.9 (CH₃ tBu). MS (MALDI-TOF) m/z calculated for C₃₉H₇₁N₃0₁₄ 805.49, obtained [M+H]⁺ = 806.55.

Compound 66 ^[37]: 1,4-Bis(chloromethyl)benzene (5 g, 28.6 mmol) was heated at 120°C until its total dissolution. After dropwise addition of triethylphosphite (2.5 mL, 14.3 mmol), the reaction mixture was stirred for 2 h. The excess of triethylphosphite was then removed *in vacuo*, and the crude mixture was purified by column chromatography (SiO₂, EtOAc/CH 80:20) to yield **66** (6.94 mmol, 48%) as a viscous colourless liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.70 (m, 4H, H Ar), 4.58 (s, 2H, CH₂Cl), 4.07 (qt, 2H, *J* = 7.02 Hz, CH₂CH₃), 3.18 (d, 2H, *J* = 21.7 Hz, CH₂PO(OEt)₂), 1.33 (dd, 3H, *J*=7.02 and 7.23 Hz, CH₃).

Compounds 68-69: The preparation procedures and analytical data similar to those reported in the literature.^[29a].

Compound 70: The preparation procedure and analytical data similar to those reported in the literature.^[29b].

Compounds 71-72: The preparation procedures and analytical data similar to those reported in the literature.^[22c]

2.1.General procedure for the "Click chemistry" reaction with azide derivatives 63 or 65 (73, 74 and 75)

A mixture of azide (67 or 72) (1.1 equiv.) and propargyl derivative (63 or 65) (1 equiv.) in THF/H₂O (4/1, v/v, in mL) in the presence of 5% mol of CuSO₄.5H₂O and 10% mol of sodium ascorbate was stirred at room temperature for 16 hrs. The reaction mixture was then quenched with brine and the aqueous phase extracted with EtOAc. The organic phase was dried over MgSO₄, filtered and concentrated *in vacuo*. The crude mixture was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 90:10).

Compound 73: Starting from **65** (0.070 g, 0.25 mmol) and **67** (0.2 g, 0.27 mmol), **73** was obtained (0.15 mmol, 60%). Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.45 (s, 1H, CH triazole), 7.35 (bs, 2H, NH), 7.15-7.04 (m, 3H, H Ar), 5.34 (s, 2H, CH₂N next to triazole), 3.86 (qt, 4H, *J* = 7.23 Hz, CH₂CH₃), 3.64 (bs, 2H, CH₂N PAMAM next to triazole), 3.53 (dd, 4H, *J* = 6.36 and 6.57 Hz, CONHCH₂CH₂O), 3.46-3.19 (m, 32H, PEG, NCH₂ PAMAM), 3.01 (d, 2H, *J* = 21.7 Hz, CH₂PO(OEt)₂), 2.60 (bs, 4H, CONHCH₂CH₂O), 2.32 (dd, 4H, *J* = 6.36 and 6.57 Hz, CH₂COOtBu), 1.28 (s, 18H, tBu), 1.09 (dd, 3H, *J* = 6.99 and 7.23 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 172.0 (CONH), 170.6 (COOtBu), 143.9 (C triazole), 133.5 (*J* = 3.82 Hz, C Ar next to triazole), 132.2 (*J* = 9.27 Hz, C Ar next to triazole), 122.8 (CH triazole), 80.5 (C^{IV} tBu), 70.4 (PEG), 70.3 (PEG), 70.1 (PEG), 70.0 (PEG), 69.9 (PEG), 66.7 (CH₂CH₂COOtBu), 62.0 (*J* = 6.54 Hz, CH₂CH₂CO), 38.9 (CONHCH₂CH₂O), 36.1 (CH₂COOtBu), 34.1, 32.3 (d, *J* = 137.5 Hz, CH₂PO(OEt)₂), 33.5 (CH₂CONH), 27.9 (tBu), 16.2 (*J* = 6.00 Hz, CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 25.87; MS (MALDI-TOF) m/z calculated for C₅₁H₈₉N₆O₁₇P 1088.60, obtained [M+H]⁺=1089.62.

Compound 74: The preparation procedure and analytical data are reported in the literature.^[22c]

Compound 75: Starting from **63** (1.3 g, 1.28 mmol) and **72** (0.55 g, 1.30 mmol), **75** was obtained (0.79 mmol, 62%). Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.69 (m, 8H, Ar TBDPS), 7.67 (s, 1H, H triazole), 7.66 to 7.28 (m, 12H, Ar TBDPS), 7.21-7.10 (m, 3H, Ar), 5.45 (s, 2H, CH₂ next to triazole), 4.00 (quint, 8H, J = 7.23 Hz, CH_2CH_3), 3.81-3.49 (m, 30H, PEG), 3.38 (q, 4H, J = 5.04 and 10.53 Hz, CH₂ PAMAM), 3.14, 3.07 (d, 4H, J = 21.9 Hz, $CH_2PO(OEt)_2$), 2.73 (dd, 4H, J = 6.12 and 6.15 Hz, NHCH₂CH₂O), 2.37 (dd, 4H, J = 6.12 and 6.36 Hz, CH₂CONH), 1.23 (t, 12H, J = 7.02 Hz, CH₃), 1.03 (s, 18H, *t*Bu); ¹³C NMR (75 MHz, CDCl₃) δ 172.0 (CONH), 144.0 (C Ar next to triazole), 135.4 (Ar TBDPS), 133.5 (Ar TBDPS), 133.0 (C triazole, J = 6.00 Hz Ar next to CH₂PO(OEt)₂), 131.3 (J = 6.54 Hz, C Ar next to CH₂PO(OEt)₂), 129.5 (Ar TBDPS), 127.8 (J = 4.91 Hz, CH Ar next to triazole), 127.5 (Ar TBDPS), 122.8 (CH triazole), 72.3 (PEG CH₂CH₂OSi), 70.6 (PEG), 70.5 (PEG), 70.4 (PEG), 70.0 (PEG), 69.7 (PEG), 63.3 (CH₂OSi), 62.1 (CH₂CH₃), 53.4 (CH₂ triazole), 49.4 (NCH₂), 47.9 (CH₂N triazole), 38.9 (CONHCH₂), 34.2, 32.4 (J = 136.9 Hz, CH₂PO(OEt)₂), 33.7 (CH₂CONH), 26.7 (*t*Bu), 19.0 (C^{IV} *t*Bu), 16.15 (J = 6.00 Hz, CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.32; MS (MALDI-TOF) m/z calculated for C₇₄H₁₁₂N₆O1₆P₂Si₂ 1458.71, obtained [M+H]⁺ = 1459.57.

3.Part III: linear phosphonates

Compound 77 ^[31]: A solution of dPEG₄-di-alcohol (21.4 g, 76.0 mmol) and KOH (1.2 g, 20.9 mmol) in THF (7 mL) was refluxed until KOH was dissolved. The solution was cooled to room temperature and TsO-PEG₃-Me ^[25] (6 g, 19.0 mmol) was added. The mixture was refluxed for 18 hrs then CHCl₃ was added. The organic layer was washed with water, dried over MgSO₄, filtered and evaporated *in vacuo* to yield **77** (12.3 mmol, 65%). Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 3.37-3.73 (m, 36H, PEG), 3.36 (s, 3H, CH₃).

3.1.General procedure for the "Click chemistry" reaction with propargyl bromide (76,78)^[32]

A suspension of potassium tert-butoxide (1.14 equiv.) in THF (25 mL) was added to a solution of PEG-alcohol (1 equiv.) dissolved in THF (3 mL) and cooled to 0°C. Propargyl bromide (2 equiv.) in THF (50 mL) was then added dropwise and the reaction mixture was stirred for 1 hr at 0°C and for one week at room temperature. EtOAc (200 mL) was added and the organic layer was washed with brine (3 x 75 mL), dried over MgSO₄, filtered and evaporated *in vacuo*. No further purification was necessary to yield the desired compound.

Compound 76 ^[33]: Starting from triethyleneglycol monomethyl ether (2 g, 12.2 mmol), **76** was obtained (12.1 mmol, 99%). Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 4.21 (d, 2H, *J* =2.4 Hz, CH₂ alkyne), 3.71-3.53 (m, 12H, PEG), 3.38 (s, 3H, CH₃), 2.42 (dd, 1H, *J* = 2.43 and 2.19 Hz, H alkyne).

Compound 78: Starting from **77** (5.26 g, 12.3 mmol), **78** was obtained (4.15 mmol, 34%). Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.66 (m, 8H), 4.20 (d, 2H, J = 1.53 Hz, CH₂ alkyne), 3.80-3.55 (m, 37H, PEG, 1H alkyne), 3.38 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 79.5 (CH alkyne), 74.8 (C alkyne), 71.5 (CH₂OCH₃), 70.2 (PEG), 70.1 (PEG), 69.9 (PEG), 68.6 (alkyne-CH₂OCH₂CH₂O) 58.4 (alkyne-CH₂), 57.8 (CH₃). MS (MALDI-TOF) m/z calculated for C₂₂H₄₂O₁₀ 466.27, obtained [M+Na]⁺ = 489.21, [M+K]⁺ = 505.17.

Compound 79: Same procedure as described for **73-75**. After column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5), **79** was obtained (0.31 mmol, 65%). Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.42 (s, 1H, H triazole), 7.10 (s, 1H, Ar), 7.01 (s, 2H, Ar), 5.36 (s, 2H, CH₂N next to triazole), 4.53 (s, 2H, CH₂O next to triazole), 3.88 (qt, 2H, J = 7.02 Hz, CH₂CH₃), 3.58-3.40 (m, 12H, PEG), 3.24 (s,

3H, OCH₃), 3.03, 2.95 (d, 4H, J = 21.93 Hz, $CH_2PO(OEt)_2$), 1.11 (dd, 3H, J = 7.02 and 7.23 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 145.5 (C triazole), 135.1 (C Ar next to triazole), 133.1 (J = 5.45 Hz, C Ar next to CH₂PO(OEt)₂), 131.5 (J = 7.08 Hz, CH Ar next to CH₂PO(OEt)₂), 128.0 (J = 4.36 Hz, CH Ar next to triazole), 122.4 (CH triazole), 71.8 (CH₂OCH₃), 70.4 (PEG), 70.3 (PEG), 69.8 (PEG), 69.6 (PEG), 64.5 (CH₂O next to triazole), 62.0 (J = 7.09 Hz, CH₂CH₃), 58.8 (OCH₃), 53.6 (CH₂N next to triazole), 34.2, 32.4 (d, J = 137.46 Hz, CH₂PO(OEt)₂), 16.2 (J = 6.0 Hz, CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.26; MS (MALDI-TOF) m/z calculated for C₂₇H₄₇N₃O₁₀P₂ 635.27, obtained [M+H]⁺ = 636.06, [M+Na]⁺ = 650.02, [M+K]⁺ = 673.98.

Compound 80: Same procedure as described for **73-75**. After column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5), compound **80** was obtained (0.57 mmol, 61%). Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.42 (s, 1H, H triazole), 7.10 (s, 1H, Ar), 7.01 (s, 2H, Ar), 5.35 (s, 2H, CH₂N next to triazole), 4.51 (s, 2H, CH₂O next to triazole), 3.87 (qt, 2H, *J* = 7.02 Hz, CH₂CH₃), 3.59-3.40 (m, 36H, PEG), 3.24 (s, 3H, OCH3), 3.02, 2.95 (d, 4H, *J* = 21.9 Hz, CH₂PO(OEt)₂), 1.10 (dd, 3H, *J* = 6.99 and 7.23 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 145.6 (C triazole), 135.3 (*J* = 6.03 Hz, C Ar next to triazole), 133.2 (*J* = 12.06 Hz, C Ar next to CH₂PO(OEt)₂), 131.5 (*J* = 6.58 Hz, CH Ar next to CH₂PO(OEt)₂), 128.0 (*J* = 10.42 Hz, CH Ar next to triazole), 122.4 (CH triazole), 71.5 (CH₂OCH₃), 70.2 (PEG), 70.1 (PEG), 69.4 (PEG), 64.2 (CH₂O next to triazole), 61.7 (*J* = 6.58 Hz, CH₂CH₃), 58.5 (OCH₃), 53.2 (CH₂N next to triazole), 33.7, 31.9 (d, *J* = 137.46 Hz, CH₂PO(OEt)₂), 15.7 (*J* = 6.0 Hz, CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.25; MS (MALDI-TOF) m/z calculated for C₃₉H₇₁N₃O₁₆P₂ 899.43, obtained [M+H]⁺ = 900.43, [M+Na]⁺ = 922.43, [M+K]⁺ = 938.40.

Compound 82: The preparation procedure and analytical data similar to those reported in the literature^[31a].

Compound 83: The preparation procedure and analytical data similar to those reported in the literature^[31b].

Compound 84: The preparation procedure and analytical data similar to those reported in the literature^[31a].

Compound 85: Same procedure as described for **72**. Starting from **83** (0.7 g, 1.07 mmol), **85** was obtained (1.07 mmol, quant). Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 3.73-3.59 (m, 32H, PEG), 3.38 (dd, 2H, J = 4.80 and 5.28 Hz, CH₂COO*t*Bu), 2.50 (t, 2H, J = 6.57 Hz, CH₂N₃), 1.45 (s, 9H, *t*Bu); ¹³C NMR (75 MHz, CDCl₃) δ 170.0 (COO*t*Bu), 80.1 (C^{IV} *t*Bu), 70.5 (PEG), 70.4 (PEG), 70.3 (PEG), 70.2 (PEG), 69.8 (PEG), 66.7 (OCH₂CH₂N₃), 50.5 (CH₂N₃), 36.1 (CH₂COO*t*Bu), 27.9 (*t*Bu). MS (MALDI-TOF) m/z calculated for C₂₃H₄₅N₃O₁₀ 523.31, obtained [M+Na]⁺ = 546.28.

Compound 86: Same procedure as described for **73-75**. Starting from **81** (1.18 g, 2.74 mmol) and **84** (1 g, 2.88 mmol), **86** was obtained (0.87 mmol, 32%). Burgundy oil. ¹H NMR (300 MHz, CDCl₃) δ 7.86 (s, 1H, CH triazole), 6.78 (m, 3H, Ar), 5.16 (s, 2H, OCH₂ triazole), 4.55 (dd, 2H, *J* = 5.04 and 5.28 Hz, NCH₂ triazole), 4.02 (qt, 8H, *J* = 7.02 Hz, CH₂CH₃), 3.89 (dd, *J* = 5.04 and 5.25 Hz, 2H, NCH₂CH₂O), 3.72-3.59 (m, 14H, PEG), 3.13, 3.06 (d, 4H, *J* = 21.93 Hz, CH₂PO(OEt)₂), 2.48 (dd, 2H, *J* = 6.57 and 6.57 Hz, CH₂COOtBu), 1.43 (s, 9H, tBu), 1.22 (t, 12H, *J* = 7.02 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.5 (COOtBu), 158.3 (C Ar next to triazole), 143.3 (C triazole), 133.1 (*J* = 9.27 Hz, C Ar next to CH₂PO(OEt)₂), 124.3 (*J* = 7.08 Hz, CH Ar next to CH₂PO(OEt)₂), 123.9 (CH triazole), 115.4 (CH Ar next to triazole), 80.1 (C^{IV} tBu), 70.4 (PEG), 70.3 (PEG), 70.2 (PEG), 70.1 (PEG), 69.1 (PEG), 68.6 (NCH₂CH₂O) next to triazole), 66.3 (OCH₂ next to triazole), 61.9 (*J* = 6.54 Hz, CH₂CH₃), 61.6 (NCH₂CH₂O), 50.1 (CH₂CH₂COOtBu), 36.1 (CH₂COOtBu), 34.3, 32.5 (*J* = 137.46 Hz, CH₂PO(OEt)₂), 27.9 (tBu), 16.2 (*J* = 6 Hz, CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.78; MS (MALDI-TOF) m/z calculated for C₃₄H₅₉N₃O₁₃P₂ 779.35, obtained [M+H]⁺ = 780.19, [M+Na]⁺ = 802.15, [M-tBu]⁺ = 724.18.

Compound 87: Same procedure as described for **73-75**. Starting from **81** (0.35 g, 0.82 mmol) and **85** (0.45 g, 0.86 mmol), **87** was obtained (0.57 mmol, 69%). Burgundy oil. ¹H NMR (300 MHz, CDCl₃) δ 7.86 (s, 1H, CH triazole), 6.85 (bs, 3H, Ar), 5.16 (s, 2H, OCH₂ triazole), 4.55 (dd, 2H, *J* = 5.04 and 5.25 Hz, NCH₂ triazole), 4.02 (qt, 8H, *J* = 7.23 Hz, CH₂CH₃), 3.89 (dd, 2H, *J* = 5.04 and 5.25 Hz, NCH₂CH₂O), 3.70 (dd, 2H, *J* = 6.36 and 6.78 Hz, CH₂CH₂COOtBu), 3.63-3.59 (m, 28H, PEG), 3.13, 3.06 (d, 4H, *J* = 21.9 Hz, CH₂PO(OEt)₂), 2.49 (t, 2H, *J* = 6.57 Hz, CH₂COOtBu), 1.44 (s, 9H, *t*Bu), 1.25 (t, *J* = 7.02 Hz, 12H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ . 170.5 (COOtBu), 158.2 (C Ar next to triazole), 143.0 (C triazole), 133.1 (*J* = 9.27 Hz, C Ar next to CH₂PO(OEt)₂), 124.1 (CH triazole), 123.8 (*J* = 6.54 Hz, CH Ar next to CH₂PO(OEt)₂), 114.7 (*J* = 9.27 Hz, CH Ar next to triazole), 80.1 (C^{IV} *t*Bu), 70.3 (PEG), 70.2 (PEG), 70.1 (PEG), 69.1 (NCH₂CH₂O), 50.0 (CH₂CH₂COO*t*Bu), 36.0 (CH₂COO*t*Bu), 34.3, 32.5 (*J* = 136.91 Hz, CH₂PO(OEt)₂), 27.8 (*t*Bu), 16.2 (*J* = 6 Hz, CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 26.74; MS (MALDI-TOF) m/z calculated for C₄₂H₇₅N₃O₁₇P₂ 955.45, obtained [M-*t*Bu]⁺ = 900.43.

3.2.General procedure for bromination of 88 and 89

To obtain compound **88** or **89**, compound **82** or **83** respectively (1 equiv.) was dissolved in acetone (5 mL). After addition of lithium bromide (2 equiv.), the solution was stirred at reflux for 16 hrs. After addition of water (20 mL) and EtOAc (10 mL), the organic layer was washed, dried over MgSO₄, filtered and evaporated *in vacuo*.

Compound 88: Starting from **82** (0.5 g, 1.25 mmol) and after purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 96:4), compound **88** was obtained (0.9 mmol, 72%). Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 3.81 (dd, 2H, J = 6.39 and 6.42 Hz, BrCH₂CH₂O), 3.71 (dd, 2H, J = 6.57 and 6.6 Hz, CH₂CH₂CO0*t*Bu), 3.68-3.58 (m, 12H, PEG), 3.47 (dd, 2H, J = 6.21 and 6.42 Hz, BrCH₂CH₂O), 2.50 (dd, 2H, J = 6.6 and 6.6 Hz, CH₂CO0*t*Bu), 1.44 (s, 9H, *t*Bu); ¹³C NMR (75 MHz, CDCl₃) δ 170.8 (CO0*t*Bu), 80.4 (C^{IV} *t*Bu), 71.1 (BrCH₂CH₂O), 70.6 (PEG), 70.5 (PEG), 70.4 (PEG), 70.3 (BrCH₂CH₂OCH₂), 66.8 (CH₂CH₂CO0*t*Bu), 36.2 (CH₂CO0*t*Bu), 30.2 (BrCH₂CH₂CH₂O), 28.0 (*t*Bu). MS (MALDI-TOF) m/z calculated for C₁₅H₂₉BrO₆ 384.11, obtained [M+Na]⁺ = 407.11.

Compound 89: Starting from **83** (0.2 g, 0.31 mmol), **89** was obtained and used in the next step without further purification (0.21 mmol, 70%). Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 3.81 (dd, 2H, J = 6.36 and 6.36 Hz, BrCH₂CH₂O), 3.71 (dd, 2H, J = 6.57 and 6.6 Hz, CH₂CH₂COOtBu), 3.68-3.59 (m, 28H, PEG), 3.47 (dd, 2H, J = 6.36 and 6.36 Hz, BrCH₂CH₂O), 2.50 (dd, 2H, J = 6.57 and 6.57 Hz, CH₂COOtBu), 1.45 (s, 9H, tBu); ¹³C NMR (75 MHz, CDCl₃) δ 170.7 (COOtBu), 80.2 (C^{IV} tBu), 71.0 (BrCH₂CH₂O), 70.5 (PEG), 70.4 (PEG), 70.3 (PEG), 70.2 (BrCH₂CH₂OCH₂), 66.7 (CH₂CH₂COOtBu), 36.1 (CH₂COOtBu), 30.2 (BrCH₂CH₂O), 27.9 (tBu). MS (MALDI-TOF) m/z calculated for C₂₃H₄₅BrO₁₀ 560.22, obtained [M+Na]⁺ = 583.12, [M+K]⁺ = 599.08.

Compounds 90 and 91 were prepared following the same procedure as described for 70.

Compound 90: Starting from **88** (0.31 g, 0.82 mmol), **90** was obtained (0.82 mmol, quant). Colourless oil. ¹H NMR (300 MHz, CDCl₃) δ 3.94 (m, 4H, CH₂CH₃), 3.65-3.43 (m, 16H, PEG), 2.33 (dd, 2H, J = 6.36 and 6.57 Hz, CH₂COOtBu), 1.95 (m, 2H, CH₂PO(OEt)₂), 1.28 (s, 9H, tBu), 1.16 (dd, 6H, J = 7.02 and 7.02 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.6 (COOtBu), 80.2 (C^{IV} tBu), 70.5 (PEG), 70.4 (PEG), 70.3 (PEG), 70.2 (PEG), 70.0 (CH₂CH₂COOtBu), 66.7 (CH₂CH₃), 64.9 (OCH₂CH₂PO(OEt)₂), 61.4 (J = 6 Hz, CH₂PO(OEt)₂), 36.1 (CH₂COOtBu), 27.7 (tBu), 16.3 (J = 6.54 Hz, CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 29.29; MS (MALDI-TOF) m/z calculated for C₁₉H₃₉O₉P 442.23, obtained [M+Na]⁺ = 465.19, [M+K]⁺ = 481.15.

Compound 91: Starting from **89** (0.1 g, 0.18 mmol), compound **91** was obtained (0.16 mmol, 92%). Colourless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.10 (m, 4H, CH₂CH₃), 3.72-3.57 (m, 32H, PEG), 2.49 (t, 2H, J = 6.6 Hz, CH₂COOtBu), 2.11 (m, 2H, CH₂PO(OEt)₂), 1.43 (s, 9H, *t*Bu), 1.31 (dd, 6H, J =

6.96 and 7.20 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.4 (COOtBu), 79.9 (C^{IV} tBu), 70.3 (PEG), 70.2 (PEG), 70.1 (PEG), 69.9 (CH₂CH₂COOtBu), 66.5 (CH₂CH₃), 64.8 (OCH₂CH₂PO(OEt)₂), 61.2 (J = 6.54 Hz, CH₂PO(OEt)₂), 35.9 (CH₂COOtBu), 27.8 (tBu), 16.2 (J = 6 Hz, CH₃); ³¹P NMR (81 MHz, CDCl₃) δ 29.35; MS (MALDI-TOF) m/z calculated for C₂₇H₅₅O₁₃P 618.33, obtained [M+Na]⁺ = 641.10, [M+K]⁺ = 657.08.

II.NMR spectra of the different synthesized compounds

Compound 5 (¹H and ¹³C, CDCl₃)

Compound 6 (¹H and ¹³C, CD₃OD)

Compound 10 (¹H and ¹³C, CDCl₃)

Compound 13 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 14 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 15 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 16 (¹H and ¹³C, DMSO-d₆)

Compound 17 (¹H, ¹³C and ³¹P, CDCl₃ and CD₃OD)

Compound 18 (¹H, ¹³C and ³¹P, CD₃OD)

Compound 19 (¹H and ¹³C, CD₃OD)

Compound 20 (¹H and ¹³C, CDCl₃)

Compound 21 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 22 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 23 (¹H and ¹³C, CDCl₃)

Compound 24 (¹H and ¹³C, CDCl₃)

Compound 25 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 26 (¹H, ¹³C and ³¹P, CD₃OD)

Compound 27 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 28 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 29 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 30 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 31 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 32 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 33 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 34 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 36 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 37 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 38 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 39 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 40 (¹H, ¹³C and ³¹P, CD₃OD)

Compound 41 (¹H, ¹³C and ³¹P, CD₃OD)

Compound 42 (¹H, ¹³C and ³¹P, CD₃OD)

Compound 43 (¹H, ¹³C and ³¹P, CD₃OD)

Compound 44 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 45 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 46 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 47 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 48 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 50 (¹H and ¹³C, CD₂Cl₂)

Compound 52 (¹H, ¹³C and ³¹P, CD₃OD)

Compound 53 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 54 (¹H, ¹³C and ³¹P, CD₃OD)

Compound 55 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 56 (¹H, ¹³C and ³¹P, CD₃OD)

Compound 57 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 58 (¹H, ¹³C and ³¹P, CD₃OD)

Compound 59 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 60 (¹H, ¹³C and ³¹P, CD₃OD)

Compound 61 (¹H and ¹³C, D₂0)

Compound 65 (¹H and ¹³C, CDCl₃)

Compound 66 (¹H, CDCl₃, Tetrahedron Letters, 2006, 47, 2731-2734)

Compound 67 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 72 (¹H and ¹³C, CDCl₃)

Compound 73 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 74 The analytical data are reported in the literature.^[22c]

Compound 75 (¹H and ¹³C, CDCl₃)

Compound 76 (¹H, CDCl₃, literature: JACS, 2010, 132, 13928-13935)

Compound 78 (¹H and ¹³C, CDCl₃)

Compound 79 (¹H and ¹³C, CDCl₃)

Compound 80 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 85 (¹H and ¹³C, CDCl₃)

Compound 86 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 87 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 88 (¹H and ¹³C, CDCl₃)

Compound 89 (¹H and ¹³C, CDCl₃)

Compound 91 (¹H, ¹³C and ³¹P, CDCl₃)

Compound 92 (¹H, ¹³C and ³¹P, CD₃OD)

Compound 94 The analytical data are reported in the literature.^[22c]

Compound 95 (¹H, ¹³C and ³¹P, CD₃OD)

Compound 98 (¹H, ¹³C and ³¹P, CD₃OD)

Compound 99 (¹H and ¹³C, CD₃OD)

Compound 100 (¹H, ¹³C and ^{31P}, CD₃OD)

II.IR Spectra of dendronized NPs

3800 3600 3400 3200 3000 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 cm⁻¹

IR spectra of 94 (red line), NP@94 (black line).

III.References used for experimental procedures

- ²² B. Basly, G. Popa, S. Fleutot, B. Pichon, A. Garofalo, C. Ghobril, C. Billotey, A. Berniard, P. Bonazza, H. Martinez, P. Perriat, D. Felder-Flesch, S. Begin-Colin, *Dalton Trans.*, 2013, **42**, 2146; G. Lamanna, A. Garofalo, G. Popa, C. Wilhelm, S. Bégin-Colin, D. Felder-Flesch, F. Gazeau, A. Bianco, C. Ménard-Moyon, *Nanoscale* 2013, **5**, 4412; C. Ghobril, G. Popa, A. Parat, C. Billotey, P. Bonazza, J. Taleb, S. Begin-Colin, D. Felder-Flesch, *Chem. Commun.*, **2013**, **49**, 9158.
- ²³ A. Hofmann, S. Thierbach, A. Semisch, A. Hartwig, M. Taupitz, E. Rühl, J. Mater. Chem., 2010, 20, 7842.
- ²⁴ T. J. Daou, J. M. Greneche, G. Pourroy, S. Buathong, A. Derory, C. Ulhaq-Bouillet, B. Donnio, D. Guillon, S. Begin-Colin, *Chem. Mater.*, 2008, **20**, 5869; T. J. Daou, S. Begin-Colin, J.-M. Greneche, F. Thomas, A. Derory, P. Bernhardt, P. Legare, G. Pourroy, *Chem. Mater.*, 2007, **19**, 4494.
- ²⁵ B. Basly, D. Felder-Flesch, P. Perriat, C. Billotey, J. Taleb, G. Pourroy, S. Begin-Colin. Chem. Commun. 2010, 46, 985.
- ²⁶ G. Lamanna, M. Kueny-Stotz, H. Mamlouk-Chaouachi, A. Bertin, B. Basly, C. Ghobril, C. Billotey, I. Miladi, G. Pourroy, S. Begin-Colin, D. Felder-Flesch, *Biomaterials*, 2011, **32**, 8562; M. Kueny-Stotz, H. Mamlouk-Chaouachi, D. Felder-Flesch, *Tetrahedron Lett.* 2011, **52**, 2906.
- ²⁷C. Gentilini, M. Boccalon, L. Pasquato, Eur. J. Org. Chem., 2008, 3308.
- ²⁸ C. E. McKenna, M. T. Higa, N. H. Cheung, M. C. McKenna, Tetrahedron. Lett. 1977, 155.
- ²⁹ D. Schrigten, H.-J. Breyholz, S. Wagner, S. Hermann, O. Schober, M. Schäfers, G. Haufe, K. Kopka, J. Med. Chem. 2012, 55, 223.
- ³⁰ J. W. Lee, B.-K. Kim, H. J. Kim, S. C. Han, W. S. Shin, S.-H. Jin, *Macromolecules*, 2006, **39**, 2418.
- ³¹ A. Markovac, M.P. Lamontagne, J. Med. Chem., 1980, 23, 1198; S.V. Bhosale, M.B. Kalyankar, S.J. Langford, S.V. Bhosale, R.F. Oliver, Eur. J. Org. Chem. 2009, 24, 4128; E. Diez-Barra, J.C. Garcia-Martinez, S. Merino, R. del Rey, J. Rodriguez-Lopez, P. Sanchez-Verdu, J. Tejeda, J. Org. Chem., 2001, 66, 5664.
- ³² T. Shiraki, A. Dawn, Y. Tsuchiya, S. Shinkai, J. Am. Chem. Soc., 2010, 132, 13928.
- ³³ A. Cappelli, S. Galeazzi, G. Guiliani, M. Anzini, M. Grassi, R. Lapasin, G. Grassi, R. Farra, B. Dapas, M. Aggravi, A. Donati, L. Zetta, A.C. Boccia, F. Bertini, F. Samperi, S. Vomero, *Macromolecules*, 2009, **42**, 2368.
- ³⁴ H. Herzner, H. Kunz, Carbohydrate research, 2007, 342, 541.
- ³⁵H.E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem., 1997, 62, 7512.
- ³⁶ A. Williamson, *Philos. Mag. Series 3*, 1850, **37**, 350.
- ³⁷ R. Madathil, R. Parkesh, S.M. Draper, *Tetrahedron. Lett.*, 2006, 47, 2731.