Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry 2014

Kinetic Analysis of CO-releasing of a Diiron Hexacanbonyl Complex Promoted by Amino Acids

Limei Chen^{1, 2}, Xiujuan Jiang², Xiu Wang², Li Long², Jiayao, Zhang², Xiaoming

Liu ^{1, 2*}

¹School of Metallurgy and Chemical Engineering, Jiangxi University of Science and

Technology

²College of Biological, Chemical Sciences and Engineering, Jiaxing University

Supporting information

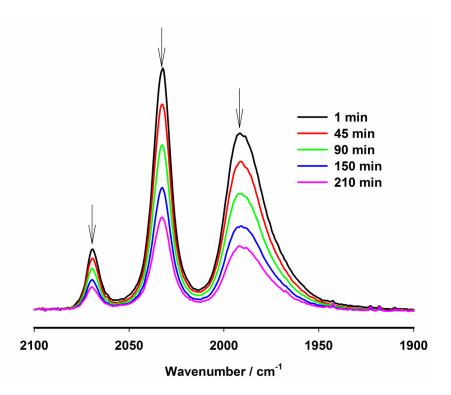


Fig. S1 Infrared spectral variation during the CO-releasing process ([1] = 0.0115 mol L^{-1} and [L-proline] = 0.0345 mol L^{-1}) in DMSO / H₂O mixture at 37 °C under open atmosphere.

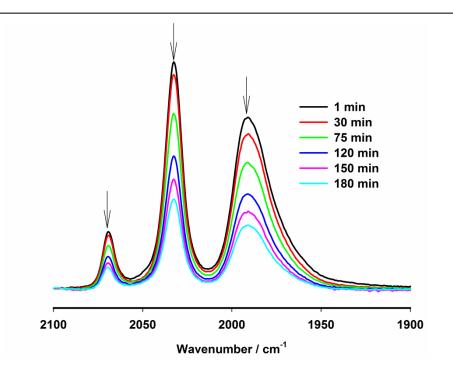


Fig. S2 Infrared spectral variation during the CO-releasing process ([1] = 0.0115 mol L^{-1} and [L-histidine] = 0.0345 mol L^{-1}) in DMSO / H₂O mixture at 37 °C under open atmosphere.

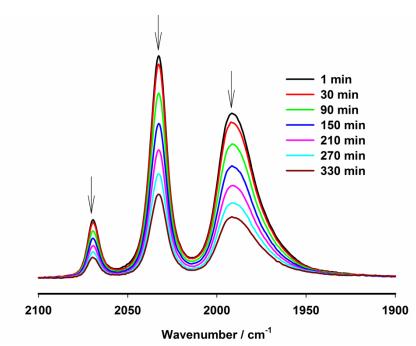


Fig. S3 Infrared spectral variation during the CO-releasing process ([1] = 0.0115 mol L^{-1} and [alanine] = 0.0345 mol L^{-1}) in DMSO / H₂O mixture at 37 °C under open atmosphere.

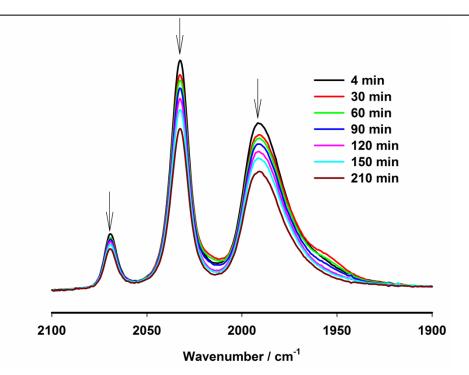
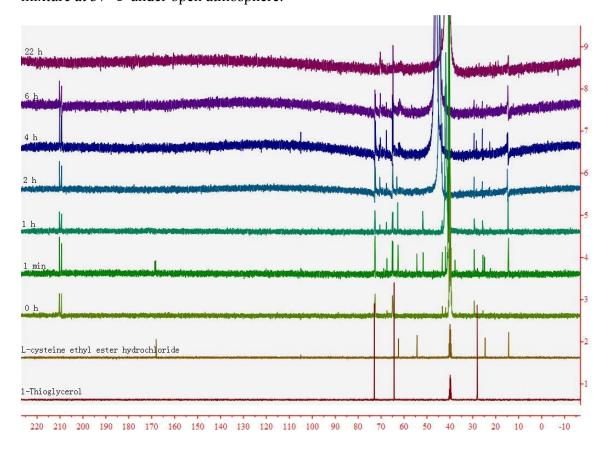



Fig. S4 Infrared spectral variation during the CO-releasing process ([1] = 0.0115 mol L^{-1} and [L-cysteine ethyl ester hydrochloride] = 0.0345 mol L^{-1}) in DMSO / H₂O mixture at 37 °C under open atmosphere.

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2014

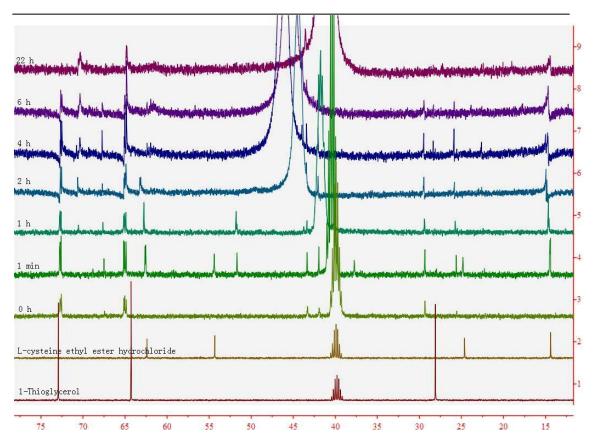


Fig. S5 ¹³C NMR spectroscopic variation with reaction time of complex **1** under the substitution of L-cysteine ethyl ester hydrochloride (for comparison, the chemical shifts of free 1-thioglycerol, L-cysteine ethyl ester hydrochloride and complex **1** are also included).

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is $\mbox{$^{\odot}$}$ The Royal Society of Chemistry 2014

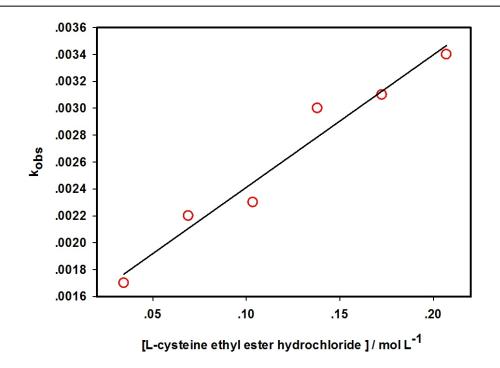


Fig. S6 Plot of k_{obs} versus the concentration of L-cysteine ethyl ester hydrochloride in which the concentration of complex 1 was kept at 0.0115 mol L⁻¹.

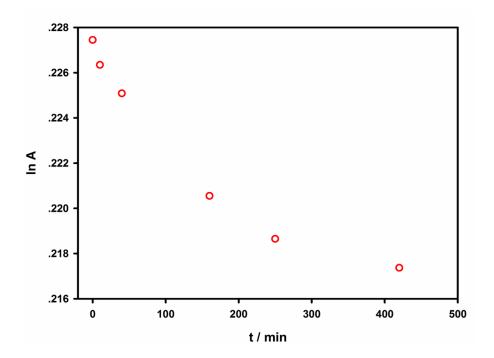


Fig. S7 The logarithmic plots of concentrations of complex 1 against reaction time in the presence of pyridine in DMSO / H_2O mixture (4:1) at 37 °C under open

atmosphere ([1] = 0.0115 mol L⁻¹, the absorbance used for the kinetic analysis was used at 2032 cm⁻¹).

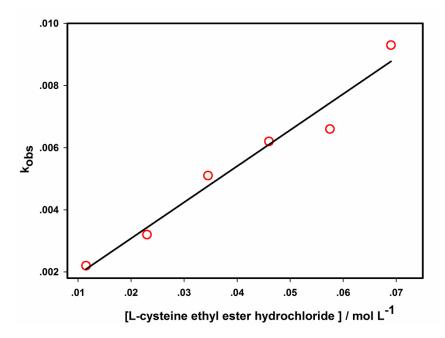


Fig. S8 Plot of k_{obs} versus the concentration of L-cysteine ethyl ester hydrochloride in the second stage ([1] = 0.0115 mol L⁻¹ in D₂O).

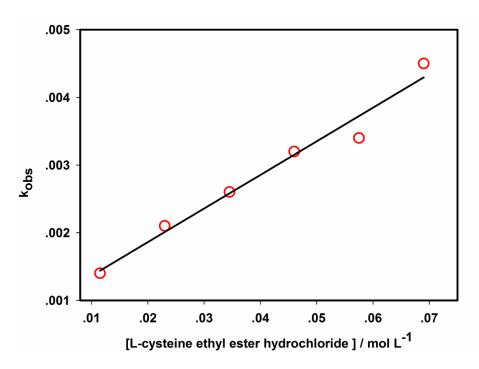


Fig. S9 Plot of k_{obs} versus the concentration of L-cysteine ethyl ester hydrochloride in the second stage ([1] = 0.0115 mol L⁻¹ in physiological saline).

Table S1 The kinetic data of the decomposition of complex **1** in D₂O and physiological saline at 37°C in the second stage, respectively ([**1**] = 0.0115 mol L⁻¹, [L-cysteine ethyl ester hydrochloride] / [**1**] = 3, 6, 9, 12, 15 and 18, respectively).

$k_{obs} \times 10^{-3} (D_2 O)$	2.2	3.2	5.1	6.2	6.6	9.3
t _{1/2} (min) (D ₂ O)	315	217	136	112	105	75
$k_{obs} \times 10^{-3}$ (physiological saline)	1.4	2.1	2.6	3.2	3.4	4.5
$t_{1/2}$ (min) (physiological saline)	495	330	267	217	204	154