Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014 ## New Journal of Chemistry **RSCPublishing** **ARTICLE** ## Revisiting urea-based gelators: strong solvent- and castingmicrostructuration dependencies and organogel processing with an alumina template Thanh-Loan Lai,^a David Canevet,^{a*} Yasser Almohamed,^a Jean-Yves Mévellec,^b Régis Barillé,^a Narcis Avarvari^{a*} and Marc Sallé^{a*} | Fig. S1 Teas diagram including the set of solvents under consideration | p 2 | |--|-----| | Fig. S2 ¹ H NMR spectrum of compound 1 in DMSO-D ₆ at 393 K | p 2 | | Fig. S3 ¹ H NMR spectrum of compound 2 in DMSO-D ₆ at 393 K | p 3 | | Table S1 . Images of 1 -based xerogels by optical microscopy depending on the solvent of preparation and the casting method (the corresponding gels were prepared at a concentration $C = 1.25 \times CGC$) | p 4 | | Table S2 . Images of 2 -based xerogels by optical microscopy depending on the solvent of preparation (the corresponding gels were prepared at a concentration $C = 1.25 \times CGC$ and deposited as such) | p 5 | | Table S3 . Images of 2 -based xerogels by optical microscopy depending on the solvent of preparation (the corresponding gels were prepared at a concentration $C = 1.25 \times CGC$ and drop-casted). | p 6 | | Table S4 . Images of the slice, upper and lower faces of the alumina membranes by SEM microscopy depending on the method of deposition. | p 7 | | Fig. S4 NMR spectra of a sample of compound 1 before and after a DSC cycle $(30^{\circ}\text{C} \rightarrow 120^{\circ}\text{C} \rightarrow 30^{\circ}\text{C})$. | p 9 | | Fig. S5 SEM micrographs of the 2 -based xerogel prepared from o DCB after one week in a 5M NaOH aqueous solution at 80°C | p 9 | Fig. S1 Teas diagram including the set of solvents under consideration Fig. S2 ^1H NMR spectrum of compound 1 in DMSO-D6 at 393 K Fig. S3 1H NMR spectrum of compound 2 in DMSO-D6 at 393 K **Table S1.** Images of **1**-based xerogels by optical microscopy depending on the solvent of preparation and on the casting method (*the corresponding gels were prepared at a concentration* $C = 1.25 \times CGC$) **Table S2**. Images of **2**-based xerogels by optical microscopy depending on the solvent of preparation (the corresponding gels were prepared at a concentration $C = 1.25 \times CGC$ and deposited as such) **Table S3**. Images of **2**-based xerogels by optical microscopy depending on the solvent of preparation (the corresponding gels were prepared at a concentration $C = 1.25 \times CGC$ and drop-casted). **Table S4**. Images of the slice, upper and lower faces of the alumina membranes by SEM microscopy depending on the method of deposition. Upper face Slice Lower face Method i ii iii iv **Figure S4.** ¹H NMR spectra of a sample of compound **1** before and after a DSC cycle (30°C \rightarrow 120°C \rightarrow 30°C). **Figure S5**. SEM micrographs of the **2**-based xerogel prepared from oDCB after one week in a 5M NaOH aqueous solution at 80°C