Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

New Journal of Chemistry

Supplementary Material

Structural, spectroscopic and theoretical studies on dixanthogens: (ROC(S)S)₂, with R = n-propyl and isopropyl

Luciana C. Juncal, Yeny A. Tobón, Oscar E. Piro, Carlos O. Della Védova and Rosana M. Romano*

Empirical formula	$C_8 H_{14} O_2 S_4$
Formula weight	270.43
Temperature	296(2) K
Wavelength	1.54184 Å
Crystal system	Monoclinic
Space group	$P2_{1}/c$
Unit cell dimensions	a = 9.735(1) Å
	b = 12.588(3) Å
	c = 12.131(2) Å
	$\beta = 112.65(1)^{\circ}$
Volume	1371.9(4) Å ³
Z, calculated density	4, 1.309 Mg/m ³
Absorption coefficient	6.186 mm ⁻¹
F(000)	568
Crystal size	$0.36 \ge 0.24 \ge 0.20 \text{ mm}^3$
ϑ -range for data collection	4.92 to 68.00°
Index ranges	11≤h≤0, -1≤k≤15, -13≤l≤14
Reflections collected	2798
Independent reflections	2408 [R(int) = 0.0572]
Observed reflections $[I>2\sigma(I)]$	1984
Completeness to $\vartheta = 68.00^{\circ}$	96.4%
Max. and min. transmission	0.4126 and 0.1587
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2408 / 0 / 131
Goodness-of-fit on F ²	1.065
Final R indices $[I>2\sigma(I)]$	R1 = 0.0720, wR2 = 0.1911
R indices (all data)	R1 = 0.0806, $wR2 = 0.2066$
Largest diff. peak and hole	0.769 and -0.474 e.Å ⁻³
$\overline{R_1 = \Sigma} F_o - F_c / \Sigma F_o , \ wR_2 = [\Sigma w]$	$(F_o ^2 - F_c ^2)^2 / \Sigma w (F_o ^2)^2]^{1/2}$

Table S1. Crystal data and structure refinement results for [(CH₃)₂CHOC(S)S]₂.

Atom	Х	У	Z	U(eq)
S(1)	8205(1)	885(1)	-78(1)	81(1)
S(2)	6946(1)	-450(1)	-686(1)	78(1)
S(3)	9701(2)	2389(1)	-1001(1)	117(1)
S(4)	3849(1)	-941(1)	-1949(1)	91(1)
O(1)	8069(4)	795(2)	-2244(2)	86(1)
O(2)	4956(3)	1016(2)	-1523(2)	68(1)
C(1)	8657(4)	1342(3)	-1266(3)	73(1)
C(2)	5099(4)	-4(3)	-1444(3)	69(1)
C(3)	8360(6)	1075(4)	-3326(4)	91(1)
C(4)	3463(4)	1482(3)	-2153(3)	72(1)
C(5)	6890(7)	1147(6)	-4317(5)	139(3)
C(6)	3180(6)	1528(4)	-3462(4)	98(1)
C(7)	9323(7)	217(7)	-3491(6)	139(2)
C(8)	3505(6)	2544(3)	-1607(4)	91(1)

Table S2 Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2$ x 10³) for [(CH₃)₂CHOC(S)S]₂. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table S3. Full bond lengths [Å] and angles [°] for $[(CH_3)_2CHOC(S)S]_2$

S(1)-C(1)	1.758(4)	C(2)-S(2)-S(1)	106.0(1)
S(1)-S(2)	2.042(2)	C(1)-O(1)-C(3)	120.9(3)
S(2)-C(2)	1.767(4)	C(2)-O(2)-C(4)	119.3(3)
S(3)-C(1)	1.619(4)	O(1)-C(1)-S(3)	129.4(3)
S(4)-C(2)	1.635(4)	O(1)-C(1)-S(1)	114.5(3)
O(1)-C(1)	1.298(4)	S(3)-C(1)-S(1)	116.1(2)
O(1)-C(3)	1.488(5)	O(2)-C(2)-S(4)	130.3(3)
O(2)-C(2)	1.291(4)	O(2)-C(2)-S(2)	114.4(3)
O(2)-C(4)	1.478(4)	S(4)-C(2)-S(2)	115.3(2)
C(3)-C(5)	1.475(8)	C(5)-C(3)-O(1)	106.3(4)
C(3)-C(7)	1.493(8)	C(5)-C(3)-C(7)	113.4(5)
C(4)-C(6)	1.504(5)	O(1)-C(3)-C(7)	106.9(4)
C(4)-C(8)	1.487(6)	O(2)-C(4)-C(6)	107.8(3)
		O(2)-C(4)-C(8)	105.9(3)
C(1)-S(1)-S(2)	106.1(1)	C(6)-C(4)-C(8)	113.5(4)

Atom	U^{11}	U^{22}	U ³³	U ²³	U^{13}	U^{12}
S(1)	76(1)	104(1)	55(1)	-6(1)	17(1)	4(1)
S(2)	91(1)	78(1)	70(1)	12(1)	36(1)	13(1)
S(3)	111(1)	125(1)	110(1)	-34(1)	37(1)	-50(1)
S(4)	102(1)	76(1)	106(1)	-10(1)	54(1)	-16(1)
O(1)	109(2)	88(2)	65(2)	-14(1)	39(2)	-28(2)
O(2)	72(1)	69(1)	60(1)	6(1)	20(1)	-2(1)
C(1)	61(2)	85(2)	66(2)	-6(2)	17(2)	2(2)
C(2)	80(2)	77(2)	58(2)	2(2)	36(2)	0(2)
C(3)	120(4)	92(3)	71(2)	-6(2)	47(2)	-27(3)
C(4)	67(2)	77(2)	69(2)	9(2)	24(2)	0(2)
C(5)	143(5)	199(7)	79(3)	25(4)	47(3)	61(5)
C(6)	109(3)	105(3)	63(2)	7(2)	15(2)	7(3)
C(7)	104(4)	210(7)	124(5)	22(5)	68(4)	32(5)
C(8)	102(3)	83(3)	97(3)	3(2)	48(3)	7(2)

Table S4. Anisotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for [(CH₃)₂CHOC(S)S]₂. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2h \times a^{*}b^{*}U^{12}]$.

Table S5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters ($Å^2$ x 10³)for [(CH₃)₂CHOC(S)S]₂

Atom	Х	у	Z	U(eq)
H(3)	8874	1760	-3211	109
H(4)	2709	1037	-2030	86
H(5A)	6410	467	-4441	209
H(5B)	7016	1362	-5032	209
H(5C)	6289	1661	-4124	209
H(6A)	3925	1962	-3576	147
H(6B)	2214	1829	-3893	147
H(6C)	3220	824	-3751	147
H(7A)	8809	-450	-3609	208
H(7B)	10230	176	-2795	208
H(7C)	9550	375	-4177	208
H(8A)	3812	2469	-758	137
H(8B)	2532	2858	-1933	137
H(8C)	4198	2992	-1776	137

C(1)-S(1)-S(2)-C(2)	-85.0(2)
C(3)-O(1)-C(1)-S(3)	2.3(6)
C(3)-O(1)-C(1)-S(1)	-179.3(3)
S(2)-S(1)-C(1)-O(1)	3.0(3)
S(2)-S(1)-C(1)-S(3)	-178.4(2)
C(4)-O(2)-C(2)-S(4)	0.1(5)
C(4)-O(2)-C(2)-S(2)	179.2(2)
S(1)-S(2)-C(2)-O(2)	4.4(3)
S(1)-S(2)-C(2)-S(4)	-176.4(2)
C(1)-O(1)-C(3)-C(5)	-128.8(5)
C(1)-O(1)-C(3)-C(7)	109.8(5)
C(2)-O(2)-C(4)-C(6)	-85.7(4)
C(2)-O(2)-C(4)-C(8)	152.5(3)

Table S6. Torsion angles $[^{\circ}]$ for $[(CH_3)_2CHOC(S)S]_2$

Compound	δ CH ₃ .	δCH_2	δ CH ₂ –O	Reference
[CH ₃ CH ₂ OC(S)S] ₂	1.42 (t, J=7.2)	-	4.70 (q, J=7.2)	Reference 2
[CH ₃ (CH ₂) ₂ OC(S)S] ₂	0.98 (t, J=7.3)	1.73-1.91 (m)	4.55 (t, J=6.3)	This work
[(CH ₃) ₂ CHOC(S)S] ₂	1.40 (d, J= 3.2)	-	-	Reference 2
[(CH ₃) ₂ CHCH ₂ OC(S)S] ₂	1.0 (d, J= 6.8)	-	4.36 (d, J=7.2)	Reference 2

Table S7. Comparison of the ¹H NMR chemical shifts (δ , in ppm) of different dixanthogen

molecules

Table S8. Comparison of the ¹³C NMR chemical shifts (δ , in ppm) of different dixanthogen

molecules						
Compound	δ CH ₃ .	δCH_2	δ СН2-О	δCS_2	Reference	
[CH ₃ CH ₂ OC(S)S] ₂	13.8	-	71.8	207.1	Reference 2	
[CH ₃ (CH ₂) ₂ OC(S)S] ₂	10.7	21.8	76.7	207.6	This work	
[(CH ₃) ₂ CHOC(S)S] ₂	21.3	-	-	207.1	Reference 2	
[(CH ₃) ₂ CHCH ₂ OC(S)S] ₂	19.1	-	81.3	207.1	Reference 2	

Carrier gas:		Не		
Column:		19091J-433 HP-5		
Length:		30 m		
I.D:		0.25 mm		
Film:		0.25 μm		
Injection volume:		1 μl		
Column oven temper	cature:	100 °C		
Injection temperature	2:	200 °C		
Injection mode:		Split		
Flow control mode:		Pressure		
Pressure:		120.0 kPa		
Total flow:		43.8 ml/min		
Column flow:		1.94 ml/min		
Linear velocity:		50.9 cm/s		
Purge flow:		3.0 ml/min		
Split ratio:		20.0		
Oven temperature pro-	ogram:			
Rate (°C/min)	Temperature (°C)	Hold time (min)		
-	100	2		
20	150	1		
25	300	2		
Ions source temperature:		200.0 °C		
Interface temperature	e:	250.0 °C		
Solvent cut time:		3 min		
Acquisition mass ran	ige:	2 - 500		
Ionization energy:		70 eV		

 Table S9.
 Parameters used in the gas Chromatography – Mass Spectrometry measurements

	Relative	Intensity	A an <u>i</u>
m/z	[CH ₃ (CH ₂) ₂ OC(S)S] ₂	[(CH ₃) ₂ CHOC(S)S] ₂	Assignment
15	0.7	0.9	$\mathrm{CH_3}^+$
26	0.8	-	$C_2H_2^+$
27	19.0	10.1	$C_2H_3^+$
28	2.5	1.4	$C_2 H_4^+ / CO^+$
29	2.5	-	$\mathrm{CH_3CH_2}^+$
30	0.3	-	$\mathrm{CH}_2\mathrm{O}^+$
31	1.3		CH_3O^+
32	1.9	1.6	\mathbf{S}^+
38	-	0.5	$C_3H_2^+$
39	6.2	3.6	$C_{3}H_{3}^{+}$
40	0.9	0.8	$C_3H_4^+$
41	33.2	19.5	$C_{3}H_{5}^{+}$
42	3.4	3.0	$C_{3}H_{6}^{+}/C_{2}H_{2}O^{+}$
43	100.0	100.0	$C_{3}H_{7}^{+}$
44	4.1	4.1	CS^+
45	1.1	1.6	CHS^+
47	0.9	-	CH_3S^+
59	0.5	1.2	$C_3H_7O^+$
60	1.9	3.8	OCS^+
61	0.8	0.8	\mathbf{OCSH}^+
64	1.5	1.0	SS^+
65	0.5	-	S_2H^+
66	2.4	2.7	$S_2H_2^+$
75	1.4	1.2	$C_3H_7S^+$
76	5.1	3.8	CS_2^+
77	1.4	0.6	CS_2H^+
78	0.7	-	$CS_2H_2^+$
92	0.7	-	OCS_2^+

Table S10. Fragments observed in the mass spectra of $[CH_3(CH_2)_2OC(S)S]_2$ and

 $[(CH_3)_2CHOC(S)S]_2$, relative intensity and assignment

/	Relative	Assistant	
III/Z	[CH ₃ (CH ₂) ₂ OC(S)S] ₂	[(CH ₃) ₂ CHOC(S)S] ₂	Assignment
93	0.8	1.1	OCS_2H^+
95	0.7	-	CH ₃ OSS ⁺
103	2.7	3.0	$C_3H_7OCS^+$
108	8.0	16.4	\mathbf{CS}_{3}^{+}
109	0.5	0.8	CS_3H^+
110	0.8	1.5	$CS_3H_2^+$
126	-	1.2	$OCS_3H_2^+$
135	0.5	-	$C_{3}H_{7}OCS_{2}^{+}$
136	0.6	0.8	$OC_2S_3^+$
168	2.8	5.4	$OC_2S_4^+$
270	0.8	0.8	M^{+} , $[C_{3}H_{7}OCS_{2}]^{+}$

Conformer	τ _{C(9)C(6)C(3)O(2)}	τ _{C(6)} C(3)O(2)C(1)	$\tau_{S(14)C(1)S(13)S(18)}$	$\tau_{C(1)S(13)S(18)C(16)}$	$\tau_{S(13)S(18)C(16)S(15)}$	τ _{C(16)O(17)C(19)C(22)}	τ _{O(17)C(19)C(22)C(25)}	$\Delta E (kcal mol^{-1})$
I (AAAGAAA)	179.9	-178.9	177.1	85.1	177.1	-178.9	179.9	0.00
II (AAAGAAG ⁺)	179.9	-178.5	177.1	84.2	177.0	-178.6	65.0	0.08
III ($G^+AAGAAG^-$)	64.6	-178.5	177.4	86.6	177.6	-178.1	-65.4	0.26
IV (AASGAAA)	179.9	179.8	-6.3	85.3	176.3	179.0	180.0	1.54
$V (AAAGSAG^+)$	179.6	-179.1	176.5	85.6	-5.5	-179.0	65.4	1.58
VI (AASGAAG ⁺)	-179.9	-179.0	-5.0	85.3	176.4	-179.8	64.5	1.59
VII (G ⁺ AAGSAG ⁻)	64.4	-179.7	176.6	85.5	-5.2	-179.1	-64.4	1.66
VIII ($G^+ASGAAG^-$)	65.5	180.0	-6.3	87.4	175.1	178.1	-67.0	1.80
IX (AASGSAA)	180.0	-179.6	-3.3	88.8	-3.3	-179.5	180.0	2.84
$X (AASGSAG^+)$	179.9	-179.6	-2.5	88.9	-3.7	-179.7	64.7	2.92
$XI \left(G^{+}ASGSAG^{-} \right)$	65.0	-179.1	-2.9	88.7	-2.6	-179.3	-64.7	2.98

Table S11. Dihedral angles and relative energies of the most stable conformations of [CH₃(CH₂)₂OC(S)S]₂ calculated with the B3LYP/6-31+G* approximation

A, S and G denote *anti*, *syn* and *gauche*, respectively

Table S12. Dihedral angles and relative energies of the most stable conformations of [(CH₃)₂CHOC(S)S]₂ calculated with the B3LYP/6-31+G* approximation

Conformer	$\tau_{S(13)C(12)S(14)S(15)}$	$\tau_{C(12)S(14)S(15)C(16)}$	$ au_{S(14)S(15)C(16)S(17)}$	$\Delta E (kcal mol^{-1})$
I (AGA)	178.1	86.2	178.1	0.00
II (SGA)	-6.9	86.7	175.5	1.56
III (SGS)	-2.7	89.2	-2.8	2.90

A, S and G denote anti, syn and gauche, respectively

Table S13. Net atomic charges obtained by Mulliken population analysis and dipole momentsand of $[CH_3(CH_2)_2OC(S)S]_2$ and $[(CH_3)_2CHOC(S)S]_2$, calculated with the B3LYP/6-31+G*

	Net Ch	narge [e]
Atom	[CH ₃ (CH ₂) ₂ OC(S)S] ₂	[(CH ₃) ₂ CHOC(S)S] ₂
S (1)	0.273	0.279
S(2)	0.273	0.279
C(1)	-0.318	-0.272
C(2)	-0.318	-0.272
S(3)	-0.044	-0.169
S(4)	-0.044	-0.169
O(1)	0.139	-0.071
O(2)	0.139	-0.071
C(3)	-0.127	-0.127
H(3A)	0.228	0.241
H(3B)	0.224	-
C(4)	-0.127	-0.127
H(4A)	0.228	0.241
H(4B)	0.224	-
C(5)	-0.506	-0.585
H(5A)	0.206	0.228
H(5B)	0.217	0.230
H(5C)	-	0.231
C(6)	-0.506	-0.585
H(6A)	0.206	0.228
H(6B)	0.217	0.230
H(6C)	-	0.231
C(7)	-0.651	-0.669
H(7A)	0.203	0.221
H(7B)	0.231	0.229
H(7C)	0.205	0.233
C(8)	-0.651	-0.669

approximation

Atom	Net Charge [e]					
Atom	[CH ₃ (CH ₂) ₂ OC(S)S] ₂	[(CH ₃) ₂ CHOC(S)S] ₂				
H(8A)	0.203	0.221				
H(8B)	0.231	0.229				
H(8C)	0.205	0.233				
Dipole moment (µ, Debye)	3.66	4.69				

B3LYP/6-31+G* Experimental Structure I Structure II Structure III Assignment IR Ra I_{IR} I_{IR} I_{IR} I_{Raman} I_{Raman} I_{Raman} ν ν ν v_{as} CH₃; v_{as} CH₂ <1 <1 <1 <1 <1 <1 <1 <1 v_s CH₃; v_{as} CH₂; v_{as} CH₂ <1 **Overtones and Combination Bands**

Table S14. Experimental (IR and Raman) and calculated (for the most stable conformers) wavenumbers (cm⁻¹), relative intensities and tentative assignments of $[CH_3(CH_2)_2OC(S)S]_2$

continuation	of the	Table S14	
--------------	--------	-----------	--

Fynorir	nontal				B3L	YP/6-3 1	l+G*				
Experi	nentai	St	tructur	e I	Structure II Structure III Ass			Structure III		Assignment	
IR	Ra	ν	I _{IR}	I _{Raman}	ν	I _{IR}	I _{Raman}	ν	I _{IR}	I _{Raman}	
1815											
1744											
1709											
1470		1535	2	1	1536	1	1	1532	1	2	
1472		1535	<1	1	1531	1	2	1530	1	2	
1460		1524	2	<1	1525	1	3	1526	1	3	
1400	1451	1524	1	7	1525	1	7	1524	1	3	
1440		1521	<1	1	1522	<1	1				
144ð		1521	<1	<1							
1/26	1426	1515	<1	8	1515	<1	12	1515	1	6	
1436	1430	1514	1	3	1514	1	5	1514	1	6	
1418					1501	1	7	1501	1	8	
								1501	1	7	
		1440	<1	1	1443	1	1	1444	1	1	
1200	1207	1440	<1	<1	1440	<1	1	1441	<1	1	$OCH_3; OCH_2$
1389	1387	1436	1	1	1435	1	2	1425	1	4	
		1435	1	1	1424	1	3	1423	2	2	
1077	1275				1397	1	<1	1397	1	<1	
13//	1375							1397	2	1	
1240		1350	2	2	1351	3	2				
1349		1350	3	<1							
		1328	<1	9	1329	<1	9				
1210		1328	<1	<1							
1310					1316	<1	6	1317	1	5	
								1315	<1	6	
283sh	1298	1297	37	2	1298	34	4	1298	34	4	$v O-C_{in}$
1266	1265	1292	100	<1	1292	100	<1	1293	100	<1	v O-C o.f.p.
1050	1050	1277	<1	<1	1277	<1	1	1276	4	3	~ <i>1</i> , <i>p</i> ,
1258	1258	1277	<1	1	1274	4	4	1273	10	5	δCH_3 ; δCH_2
1229	1233										<i></i>

continuation of the Table S14

Evenor	montol	B3LYP/6-31+G*									
Experi	mentai	St	tructur	e I	St	tructure	eII	Str	ucture	III	Assignment
IR	Ra	ν	I _{IR}	I _{Raman}	ν	I _{IR}	I _{Raman}	ν	I _{IR}	I _{Raman}	
11/2		1186	<1	<1	1187	<1	1	1174	1	1	
1145		1186	<1	1	1173	1	1	1173	1	<1	
1130		1152	4	1	1152	4	2				
1150		1151	4	1							$V_s C - C - C$
1103					1130	3	1	1130	2	1	o CH.
1105								1130	4	1	p CII3
10/19					1071	8	3	1072	8	3	v C-C-C
1047								1069	6	2	
1036	1036	1060	24	18	1055	23	30	1047	18	37	ν C=S _{<i>i.p.</i>}
		1051	11	4							ν C-C-C
		1049	4	5	1049	6	9				Vas C C C
1018	1018 sh	1042	77	1	1036	75	6	1032	85	3	ν C=S _{o.f.p.}
934	934										
920	018	954	12	1	953	7	5				ν Ο–R _{<i>o.f.p</i>}
)20	710	953	2	5							ν Ο–R _{<i>i.f.</i>}
904	000				939	3	3	939	5	3	v O–R
094	000							937	2	3	v O–R
								911	3	4	
								910	1	3	
		902	1	1	909	2	4				a C U
965	965	902	<1	2	903	<1	<1				pCH ₃
803	805	902	<1	9	902	2	13				
		902	3	3							
856					873	1	10	874	2	2	
								874	<1	19	$v_s \cup - \cup - \cup$
770	767				780	1	<1	781	1	<1	
770	707							778	1	<1	oCH
758		768	<1	<1	770	<1	<1				μcn ₂
		768	<1	<1							
690	688	699	1	<1	699	1	2				vC-S

.					B3L	YP/6-3	1+G*				
Experii	mental	S	tructur	e I	St	tructure	e II	Structure III			Assignment
IR	Ra	ν	I _{IR}	I _{Raman}	ν	I _{IR}	I _{Raman}	ν	I _{IR}	I _{Raman}	-
		699	<1	3							
	670				695	<1	4	695	<1	3	
	070							694	<1	4	
648	648	570	<1	<1	570	<1	<1	571	<1	1	$\delta OCS_{i.p.}$
617		546	<1	<1	546	<1	<1	547	<1	<1	$\delta OCS_{o,f,p.}$
564	561	496	<1	2	492	<1	4				$\delta \text{OCS}_{i.p.}$
542	543	487	<1	1							$\delta OCS_{o,f,p.}$
520	520				461	<1	17	471	<1	20	vS-S
530	529							450	<1	<1	δΟCS
	40.9	444	<1	25							vS–S
	498				442	<1	18	442	<1	14	ρCH ₃
	478							426	1	4	δOCS
454	451				419	<1	18	413	<1	24	
402	422	359	1	1	356	1	5				δ СОС
423	423	353	1	4							
414								328	1	<1	8808.8000
394		320	1	1	325	1	2				0505,0000
360	360				302	<1	5	309	<1	4	τ HCCC
326	325	291	<1	6				291	<1	4	theee
	307	270	1	<1	277	1	4				δ SCS; δ CCC
291		235	<1	<1	239	<1	<1	235	<1	8	
271		235	<1	<1							τ ΗССС
274					226	<1	5	221	1	1	
240		208	<1	3	215	<1	1	215	<1	1	δSCS
220	221	192	<1	1	194	<1	3	193	<1	<1	$\tau \text{ COCS}$

Table S15. Experimental (IR and Raman) and calculated (for the most stable conformer) wavenumbers

(cm⁻¹), relative intensities and tentative assignments of $[(CH_3)_2CHOC(S)S]_2$

Expei	rimental	B	3LYP/6-31+	Assignment			
FTIR	FT-Raman	ν	I _{IR}	I _{Raman}	Assignment		
		3141	4	7			
		3141	<1	5			
2979	2982	3135	5	18			
		3135	2	1			
2952		3129	2	7	V _{as} CH ₃		
	2949	3129	8	39			
2932	2935	3121	<1	4			
		3121	<1	1			
2020	2020	3101	<1	4	ν C–H _{<i>o.f.p.</i>}		
2920	2920	3101	<1	11	$v C - H_{in}$		
		3059	2	100			
2895	2895	3059	4	4			
	2869	3055	1	2	$v_s CH_3$		
2871		3055	3	<1			
2816							
2742	2743						
2732	2733						
2602					$v O-C_{ofo} + \delta H-C-O_{io}$		
2532					2 v O-C _{o fp}		
2353					$v O - C_{o,fo} + \delta CH_2 - C$		
2270					$v_0 - c_1 + v_1 - s_2$		
270					v o c _{o.f.p.} v c - J _{o.f.p.}		
2070					<u>v C-S + v C-S</u>		
1056					$\frac{1}{\sqrt{1-2}} \sqrt{1-2} \sqrt$		
1979					$V O - C_{o.f.p.} + V C - S_{o.f.p.}$		
1070							
1007							
1774							
1702							
1600							
1009					$\frac{1}{\sqrt{1-2}} \sqrt{1-2} \sqrt$		
1289		1501	1	-1	2 V C-O _{o.f.p.}		
1465		1531	<u> </u>	<1			
		1530	<u> </u>	<1			
1457	1453	1518	<1	5			
		1518	2	1	δ Η–С–Н		
1448	1445	1508	<1	4			
		1508	<1	1			
1419		1504	<1	<1			
		1503	<1)	<1			
1387	1387	1444	<1	<1			
		1444	4	<1	δCH_3		
		1429	1	<1	ر ₋		
1373		1428	5	<1			

continuation of the Table \$15

Exper	imental	B	3LYP/6-31+0	G*	Accignment
FTIR	FT-Raman	ν	I _{IR}	I _{Raman}	Assignment
1354	1351	1393	3	2	δ H–C–O _{<i>i.p.</i>}
		1391	3	1	δ H–C–O _{<i>o.f.p.</i>}
	1340	1381	<1	1	
1341		1381	2	<1	8 H-C-C
	1278	1306	26	2	ν Ο-C _{<i>i.p.</i>}
1272	1268	1301	100	<1	ν O-C _{o.f.p.}
1186		1213	1	<1	δ CHC
	1185	1213	<1	1	
1146	1147	1169	<1	<1	$v_{as} C-C-C_{i.p.}$
	1117	1169	4	1	$v_{as} C-C-C_{o.f.p.}$
1092	1089	1128	22	1	δ CH ₂ –C
1083		1123	27	<1	
1027	1019	1032	18	11	ν C=S _{<i>i.p.</i>}
1003	1003	1016	94	1	ν C=S _{o.f.p.}
939	942	958	<1	<1	
	542	958	1	<1	δ CHC
934	934	948	<1	<1	
	554	948	<1	<1	
898	899	912	4	2	ν _s C–C–C _{o.f.p.}
	655	912	2	<1	$v_s C - C - C_{i.p.}$
795		806	4	<1	ν C–O _{<i>o.f.p.</i>}
	796	804	<1	4	ν C–O _{<i>i.p.</i>}
<u> </u>	C01	694	1	<1	ν C–S _{o.f.p.}
690	691	694	<1	2	$\nu C-S_{i.p.}$
567	566	572	<1	<1	$\delta_{oop} C = S_{o,f,p}$
545	548	549	<1	<1	$\delta_{\text{oop}} C = S_{i.o.}$
-	501	478	<1	3	v S–S
468	467	464	<1	<1	$\delta O - C = S_{ofo}$
	457	450	<1	6	δ C-O-C _{in}
		443	1	<1	$\delta C - O - C_{of p}$
443	444	434	1	6	$\delta S = C - S_{in}$
396		391	1	<1	$\delta C - C - O_{\alpha f \alpha}$
384	382	385	<1	3	$\frac{\delta C - C - O_{i,p}}{\delta C - C - O_{i,p}}$
		328	<1	<1	$\frac{\delta C - C - C_{\alpha, \beta}}{\delta C - C - C_{\alpha, \beta}}$
331	330	326	<1	1	<u>δ(</u>
305	302	301	1	<1	$\frac{\delta c c c c_{n,p}}{\delta s = c - s_{n}}$
257	25/	252	<u>-</u> <1	1	0 3-с 3 _{0.j.р.}
237	234	232	<1	<1	τ Η–С–С–Н
219	240	247	<1	1	δ Ω-C=S
	215	212	<1	<u>-</u> <1	00 C-5 _{<i>i</i>.<i>p</i>.}
206		210	<1	<1	τ Η–С–С–Н
		196	1	<1	
200	200	190	<1	3	τ C–C–Ο–C
	142	126	<1	1	
	128	114	<1	<1	τ C–Ο–C–S
			=	—	

Table S16. Wavelength (λ, nm) and oscillator strength of the monoelectronic transitions of

$[CH_3(CH_2)_2OC(S)S]_2$ calculated with the TD-B3LYP/6-31+g (d) approximation

N°	λ(nm)	Oscillator Strength	Major contribution	Minor contribution
5	280.5	0.047	H-2->L+2 (40%), H-1->L+1 (35%), HOMO->LUMO (19%)	
9	265.3	0.1661	H-3->L+1 (38%), H-2->LUMO (12%), H-2->L+2 (20%), HOMO->LUMO (11%), HOMO->L+2 (10%)	H-1->L+1 (3%)
11	249.3	0.7099	H-3->L+1 (48%), H-2->LUMO (10%), HOMO->L+2 (12%)	H-5->L+1 (3%), H-4->LUMO (3%), H-2->L+2 (6%), H-1->L+1 (4%)
12	236.4	0.0752	H-3->LUMO (28%), H-3->L+2 (24%), H-2->L+1 (10%), H-1->L+2 (10%)	H-5->LUMO (3%), H-4->L+1 (6%)
15	218.2	0.0355	H-5->L+1 (26%), H-4->LUMO (67%)	H-4->L+2 (2%)
18	209.6	0.159	H-5->L+1 (59%), H-4->LUMO (16%)	H-1->L+3 (5%)
19	208.5	0.0546	H-5->LUMO (14%), HOMO->L+3 (66%)	H-4->L+1 (8%), HOMO->L+4 (3%)
20	203.3	0.0568	H-1->L+3 (76%)	H-5->L+1 (2%), H-1->L+4 (5%), HOMO->L+5 (6%)
21	199.4	0.0817	HOMO->L+5 (75%)	H-3->L+3 (5%), H-3->L+4 (2%), H-1->L+3 (5%), HOMO->L+6 (3%)
26	193.1	0.141	H-3->L+3 (14%), H-1->L+4 (32%), HOMO->L+6 (11%), HOMO->L+7 (11%)	H-7->L+1 (3%), H-6->LUMO (3%), H-2->L+5 (8%), H-1->L+3 (3%), H-1->L+8 (3%)
31	184.9	0.0113	H-2->L+4 (26%), H-1->L+5 (16%), H-1->L+7 (12%), HOMO->L+8 (20%)	H-1->L+6 (7%), HOMO->L+4 (3%), HOMO->L+9 (6%)
32	184.8	0.0097	H-2->L+5 (14%), HOMO->L+6 (36%), HOMO->L+7 (35%)	H-1->L+4 (6%)
35	182.4	0.0105	H-2->L+4 (19%), H-1->L+6 (12%), HOMO->L+9 (32%)	H-2->L+3 (3%), H-2->L+8 (3%), H-1->L+5 (5%), H-1->L+7 (5%), HOMO->L+10 (6%)
36	182.0	0.0223	H-9->L+1 (10%), H-7->LUMO (16%), H-6->L+1 (54%)	H-12->L+1 (3%), H-11->L+1 (2%), H-10->LUMO (4%), H-8->LUMO (6%)
37	181.2	0.0101	H-6->L+2 (24%), H-1->L+8 (43%)	H-12->L+2 (3%), H-3->L+3 (2%), H-1->L+4 (7%), HOMO->L+11 (2%), HOMO->L+13 (3%)
40	179.4	0.0411	H-6->L+2 (28%), H-3->L+4 (11%), H-1->L+8 (21%)	H-9->L+2 (2%), H-2->L+5 (5%), H-2->L+6 (5%), H-2->L+7 (4%), HOMO->L+13 (3%)
41	179.2	0.0097	H-3->L+5 (18%), H-1->L+6 (39%), H-1->L+7 (15%)	H-2->L+8 (5%), HOMO->L+9 (4%), HOMO->L+12 (5%)
42	179.0	0.0229	H-9->LUMO (43%), H-7->L+1 (36%)	H-10->L+1 (6%), H-8->L+1 (5%), H-6->L+2 (2%)
46	177.9	0.0254	H-6->L+2 (11%), H-3->L+4 (13%), H-2->L+7 (11%), H-1->L+9 (10%)	H-14->L+2 (2%), H-12->LUMO (2%), H-11->LUMO (4%), H-9->L+2 (4%), H-8->L+1 (9%), H-6->LUMO (3%), H-2->L+5 (7%), H-2->L+6 (9%), H-1->L+8 (4%)
49	175.2	0.0146	H-2->L+8 (55%), HOMO->L+10 (19%)	H-3->L+5 (5%), H-2->L+4 (4%), H-1->L+13 (2%)
50	175.0	0.0311	H-2->L+6 (26%), HOMO->L+11 (15%), HOMO->L+13 (24%)	H-3->L+8 (9%), H-1->L+8 (3%), HOMO->L+14 (5%)
51	174.6	0.0113	H-2->L+8 (12%), HOMO->L+9 (13%), HOMO->L+10 (57%)	H-3->L+5 (3%), H-1->L+7 (4%)
56	173.4	0.0308	H-2->L+6 (11%), H-2->L+7 (56%)	H-2->L+13 (2%), H-1->L+9 (5%), H-1->L+10 (5%), HOMO->L+14 (6%)

N°	λ(nm)	Oscillator Strength	Major contribution	Minor contribution
59	172.3	0.0124	H-3->L+6 (12%), HOMO->L+12 (58%)	H-2->L+9 (3%), H-1->L+13 (3%), H-1->L+14 (4%)
60	172.0	0.0227	H-9->L+2 (71%), H-6->L+2 (10%)	H-11->L+2 (9%), H-3->L+4 (2%)
65	169.6	0.0387	H-11->L+2 (45%), H-1->L+10 (33%)	H-9->L+2 (4%)
66	169.1	0.0122	H-11->L+2 (27%), H-1->L+10 (29%)	H-9->L+2 (6%), H-1->L+9 (8%), HOMO->L+13 (6%), HOMO->L+14 (9%)
69	168.5	0.0124	H-14->LUMO (28%), H-13->L+1 (38%)	H-12->LUMO (4%), H-8->L+1 (6%), H-7->L+1 (4%), H-3->L+8 (3%), HOMO->L+13 (2%), HOMO->L+14 (5%)
74	167.1	0.0178	H-3->L+8 (29%), H-1->L+12 (13%), HOMO->L+13 (22%), HOMO->L+14 (10%)	H-12->L+2 (3%), H-11->L+2 (2%), H-3->L+4 (2%), H-1->L+10 (5%), HOMO->L+16 (3%)
78	165.3	0.0195	H-12->L+2 (47%)	H-14->L+2 (6%), H-6->L+2 (2%), H-5->L+3 (8%), H-4->L+5 (2%), H-3->L+8 (5%), H-2->L+11 (3%), H-2->L+13 (2%), H-1->L+12 (7%), HOMO->L+14 (5%)
82	163.4	0.0099	H-14->LUMO (17%), H-13->L+1 (15%), H-2->L+11 (43%)	H-12->LUMO (2%), H-2->L+13 (4%), H-1->L+12 (3%), HOMO->L+14 (2%)
89	160.8	0.014	H-4->L+5 (15%), H-3->L+9 (10%), H-3->L+10 (21%), HOMO->L+16 (19%)	H-14->L+2 (3%), H-5->L+3 (3%), H-4->L+6 (4%), H-3->L+12 (4%), H-1->L+12 (7%), HOMO->L+18 (2%)
90	160.7	0.0161	H-5->L+5 (19%), H-4->L+4 (38%), H-2->L+12 (11%)	H-5->L+6 (3%), H-4->L+3 (8%), H-4->L+8 (8%), HOMO->L+17 (3%)
91	160.6	0.0184	H-4->L+5 (37%), H-2->L+13 (13%), HOMO->L+16 (13%)	H-14->L+2 (6%), H-5->L+3 (5%), H-5->L+4 (3%), H-4->L+6 (3%), H-3->L+9 (3%), H-1->L+12 (3%)
95	158.1	0.0741	H-14->L+2 (13%), H-5->L+4 (16%), H-3->L+9 (13%), H-2->L+14 (23%), H-1->L+15 (12%)	H-5->L+3 (3%), H-5->L+8 (3%), H-3->L+10 (6%)
96	157.5	0.0069	H-3->L+11 (14%), H-2->L+12 (10%), H-1->L+14 (10%), HOMO->L+17 (36%)	H-5->L+5 (3%), H-3->L+13 (8%), H-3->L+14 (5%)
97	157.4	0.0109	H-5->L+4 (35%), H-2->L+14 (16%), H-1->L+15 (10%)	H-14->L+2 (8%), H-4->L+5 (7%), H-3->L+9 (2%), H-3->L+12 (2%), HOMO->L+16 (3%)

Table S17. Wavelength (λ, nm) and oscillator strength of the monoelectronic transitions of

$[(CH_3)_2CHOC(S)S]_2$ calculated with the TD-B3LYP/6-31+g (d) approximation

N°	λ(nm)	Oscillator Strength	Major contribution	Minor contribution
5	283.5	0.0231	H-2->LUMO (12%), H-2->L+2 (18%), H-1->L+1 (45%), HOMO->LUMO (18%)	HOMO->L+2 (3%)
9	268.0	0.0569	H-3->L+1 (52%), H-2->LUMO (11%), H-2->L+2 (17%)	HOMO->LUMO (8%), HOMO->L+2 (7%)
11	247.1	0.6605	H-3->L+1 (31%), H-2->LUMO (15%), HOMO->L+2 (16%)	H-5->L+1 (3%), H-4->LUMO (4%), H-2->L+2 (5%), H-1->L+1 (6%)
12	234.6	0.061	H-3->LUMO (21%), H-3->L+2 (25%), H-2->L+1 (11%), H-1->L+2 (10%)	H-5->LUMO (3%), H-4->L+1 (7%), H-1->L+6 (2%), HOMO->L+5 (2%)
13	221.3	0.011	HOMO->L+3 (88%)	H-4->L+1 (4%)
16	217.5	0.0183	H-5->L+1 (29%), H-4->LUMO (39%), H-4->L+2 (27%)	
18	213.4	0.0172	H-5->L+1 (14%), H-1->L+3 (64%)	H-4->LUMO (2%), H-1->L+5 (3%), HOMO->L+4 (7%), HOMO->L+7 (3%)
19	210.9	0.0345	H-5->LUMO (40%), H-4->L+1 (28%)	H-3->LUMO (2%), HOMO->L+3 (6%)
20	208.7	0.1228	H-5->L+1 (37%), H-4->LUMO (19%), H-1->L+3 (21%)	H-3->L+3 (2%)
22	206.0	0.06	HOMO->L+4 (35%), HOMO->L+6 (47%)	H-3->L+3 (2%), H-1->L+3 (5%)
24	200.7	0.0515	H-1->L+5 (55%), HOMO->L+4 (10%)	H-3->L+3 (4%), H-2->L+4 (2%), H-2->L+6 (4%), H-1->L+3 (2%), H-1->L+8 (4%), HOMO->L+6 (6%)
25	199.6	0.0094	H-1->L+5 (14%), HOMO->L+4 (35%), HOMO->L+6 (36%)	H-2->L+6 (4%), H-1->L+3 (3%)
26	198.5	0.0091	H-2->L+3 (16%), H-2->L+5 (18%), H-1->L+4 (12%), H-1->L+6 (36%)	H-6->LUMO (3%), H-2->L+8 (3%), H-2->L+9 (2%)
27	196.3	0.0157	H-3->L+3 (63%), HOMO->L+7 (14%)	H-1->L+5 (3%), HOMO->L+4 (9%)
29	193.9	0.0097	H-2->L+5 (13%), H-1->L+4 (54%), HOMO->L+8 (21%)	HOMO->L+10 (3%)
32	192.2	0.0242	H-3->L+3 (15%), HOMO->L+7 (73%)	
33	190.5	0.0131	H-2->L+4 (15%), H-2->L+6 (36%), H-1->L+5 (13%)	H-7->LUMO (3%), H-6->L+1 (3%), H-3->L+3 (4%), H-3->L+5 (5%), H-1->L+8 (5%), H-1->L+9 (3%)
35	187.9	0.0151	H-1->L+7 (41%), HOMO->L+10 (35%)	H-3->L+4 (4%), H-1->L+4 (8%)
37	186.7	0.0289	H-3->L+5 (22%), H-2->L+4 (46%), H-1->L+8 (13%)	H-1->L+10 (3%), HOMO->L+11 (5%)
38	184.7	0.0499	H-3->L+5 (24%), H-1->L+8 (41%), H-1->L+9 (14%)	HOMO->L+6 (3%), HOMO->L+12 (5%)
42	183.2	0.0159	H-2->L+4 (11%), H-1->L+10 (10%), HOMO->L+11 (33%), HOMO->L+12 (20%)	H-2->L+6 (7%), H-1->L+8 (6%)
48	178.8	0.0201	H-8->L+1 (10%), H-7->L+1 (37%), H-6->LUMO (24%), H-6->L+2 (12%)	H-3->L+4 (4%), H-3->L+6 (4%)
49	178.6	0.0328	H-2->L+7 (29%), H-1->L+9 (22%), HOMO->L+12 (28%)	H-2->L+4 (3%), HOMO->L+11 (7%)
50	177.7	0.0139	H-6->L+2 (66%), H-2->L+8 (10%)	H-3->L+4 (4%), H-3->L+6 (7%), H-2->L+9 (3%)
51	176.77	0.0506	H-1->L+10 (29%), HOMO->L+12 (12%), HOMO->L+14 (25%)	H-3->L+8 (6%), H-3->L+9 (4%), H-2->L+7 (2%),

N°	λ(nm)	Oscillator Strength	Major contribution	Minor contribution
				H-2->L+12 (3%), HOMO->L+11 (3%)
53	176.27	0.0149	H-1->L+11 (42%), HOMO->L+13 (14%)	H-3->L+4 (8%), H-2->L+9 (2%), H-2->L+10 (6%), H-1->L+12 (8%), HOMO->L+10 (8%)
55	174.0	0.0165	H-3->L+7 (39%), H-1->L+11 (25%)	H-4->L+3 (3%), H-3->L+4 (2%), H-2->L+10 (7%), H-1->L+12 (9%), HOMO->L+13 (3%), HOMO->L+15 (2%)
60	172.8	0.0145	H-3->L+8 (41%), HOMO->L+14 (21%)	H-7->L+2 (2%), H-3->L+5 (3%), H-3->L+9 (3%), H-1->L+9 (3%), H-1->L+10 (3%), H-1->L+13 (2%), HOMO->L+12 (4%), HOMO->L+18 (5%)
61	172.5	0.0106	H-8->L+1 (17%), HOMO->L+15 (38%)	H-6->LUMO (3%), H-3->L+7 (4%), H-2->L+9 (4%), H-2->L+10 (2%), H-1->L+12 (3%), H-1->L+14 (4%), HOMO->L+13 (8%), HOMO->L+17 (4%)
70	167.0	0.0338	H-3->L+10 (17%), H-2->L+12 (25%), H-1->L+13 (17%), H-1->L+15 (23%)	H-3->L+9 (2%), HOMO->L+18 (3%)
71	166.9	0.0128	H-2->L+11 (11%), H-2->L+12 (28%), H-1->L+15 (10%), HOMO->L+16 (23%)	H-3->L+8 (2%), H-2->L+14 (3%), H-1->L+13 (4%), HOMO->L+14 (4%), HOMO->L+18 (4%)
73	166.6	0.021	H-3->L+9 (34%), HOMO->L+16 (20%), HOMO->L+18 (19%)	H-3->L+8 (5%), H-1->L+13 (7%), HOMO->L+14 (3%)
77	164.5	0.0181	H-8->L+2 (11%), H-5->L+5 (10%), H-3->L+10 (24%), H-1->L+15 (20%)	H-5->L+3 (3%), H-2->L+12 (5%), HOMO->L+18 (9%)
83	163.1	0.0643	H-8->L+2 (32%), H-5->L+5 (11%), H-4->L+6 (11%), H-3->L+10 (15%)	H-4->L+4 (4%), H-2->L+12 (3%), H-2->L+14 (2%)
87	161.7	0.035	H-11->LUMO (24%), H-9->L+1 (39%)	H-12->LUMO (4%), H-5->L+5 (4%), H-4->L+4 (3%), H-2->L+14 (4%), H-1->L+17 (6%)
94	159.4	0.0199	H-11->L+2 (12%), H-8->L+2 (20%), H-5->L+5 (12%), H-4->L+4 (30%)	H-12->L+2 (3%), H-11->LUMO (3%), H-9->L+1 (2%), H-4->L+6 (3%), H-2->L+14 (4%), H-2->L+16 (3%)

Figure S1. ¹H NMR spectra of [CH₃(CH₂)₂OC(S)S]₂ in CDCl₃.

Figure S2. ¹³C NMR spectra of [CH₃(CH₂)₂OC(S)S]₂ in CDCl₃.

Figure S3. Mass spectra of $[CH_3(CH_2)_2OC(S)S]_2$ (a) and $[(CH_3)_2CHOC(S)S]_2$ (b), on electron impact ionization (70 eV, ion source temperature = 200 °C).

Figure S4. Molecular models of the most stable conformers of $[CH_3(CH_2)_2OC(S)S]_2$ calculated with the B3LYP/6-31+G* approximation.

Figure S5. Molecular models of the most stable conformers of $[(CH_3)_2CHOC(S)S]_2$ calculated with the

B3LYP/6-31+G* approximation.

Figure S6. Absorption spectra (full trace) and oscillator strength of the electronic transitions (blue bars) of $[CH_3(CH_2)_2OC(S)S]_2$ calculated with the TD-B3LYP/6-31+G* approximation.

Figure S7. Absorption spectra (full trace) and oscillator strength of the electronic transitions (blue bars) of

[(CH₃)₂CHOC(S)S]₂ calculated with the TD-B3LYP/6-31+G* approximation.