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Table S1 Selected bond distances (Å) and angles (deg) for 1-3. 

1 2 3 

Co(1)…Co(1)#1              2.8640(16) 

Co(1)-O(4)                       1.862(3)  

Co(1)-N(1)                       1.869(4) 

Co(1)-O(1)                       1.912(3) 

Co(1)-O(1)#1                   1.918(3) 

Co(1)-O(2)                       1.945(3) 

Co(1)-O(5)                       1.948(3) 

O(1)-Co(1)#1                   1.918(3) 

 

O(4)-Co(1)-N(1)              95.72(14) 

O(4)-Co(1)-O(1)              93.27(12) 

N(1)-Co(1)-O(1)              87.32(13) 

O(4)-Co(1)-O(1)#1          176.37(13) 

 N(1)-Co(1)-O(1)#1         85.10(13) 

O(1)-Co(1)-O(1)#1          83.23(13) 

O(4)-Co(1)-O(2)              90.02(13) 

N(1)-Co(1)-O(2)             173.71(14) 

O(1)-Co(1)-O(2)              94.95(12) 

O(1)#1-Co(1)-O(2)          89.34(12) 

O(4)-Co(1)-O(5)              91.36(13) 

N(1)-Co(1)-O(5)              89.67(14) 

O(1)-Co(1)-O(5)             174.70(12) 

O(1)#1-Co(1)-O(5)         92.17(12) 

O(2)-Co(1)-O(5)              87.61(12) 

Co(1)-O(1)-Co(1)#1        96.77(13) 

 

 

Co(1)…Co(2)                      3.005(1) 

Co(1)-O(1)                          1.896(5)  

Co(1)-O(2)                          1.916(5) 

Co(1)-O(5)                          1.894(5)  

Co(1)-O(6)                          1.942(5)  

Co(1)-N(1)                          1.912(6)  

Co(1)-N(2)                          1.908(6)  

Co(2)-O(2)                          2.042(5)  

Co(2)-O(3)                          2.056(5)  
Co(2)-O(6)                          2.037(5)  

Co(2)-O(7)                          2.085(5)  

Co(2)-O(9)                          2.190(5) 

Co(2)-O(10)                        2.147(5)  

 

O(5)-Co(1)-O(2)                 92.6(2)  

O(5)-Co(1)-O(6)                 176.5(2)  

O(5)-Co(1)-O(1)                 91.6(2)  

O(5)-Co(1)-N(2)                 95.1(2)  

O(5)-Co(1)-N(1)                 88.1(2)  

O(2)-Co(1)-O(6)                 84.3(2)  

O(1)-Co(1)-O(2)                 175.7(2)  

O(1)-Co(1)-O(6)                 91.5(2)  

O(1)-Co(1)-N(2)                 87.6(2)  

O(1)-Co(1)-N(1)                 94.8(2)  

N(2)-Co(1)-O(2)                 93.0(2)  

N(2)-Co(1)-O(6)                 83.4(2)  

N(2)-Co(1)-N(1 )                176.0(3)  

N(1)-Co(1)-O(2)                 84.4(2)  

N(1)-Co(1)-O(6)                 93.3(2)  

O(2)-Co(2)-O(9)                166.65(19)  

O(2)-Co(2)-O(10)              106.2(2)  

O(2)-Co(2)-O(7)                94.0(2)  

O(2)-Co(2)-O(3)                92.6(2)  

O(10)-Co(2)-O(9)              60.45(19)  

O(6)-Co(2)-O(9)                114.50(19)  

O(6)-Co(2)-O(2)                78.8(2)  

O(6)-Co(2)-O(10)              174.1(2)  

O(6)-Co(2)-O(7)                90.1(2)  

O(6)-Co(2)-O(3)                88.2(2)  

O(7)-Co(2)-O(9)                86.6(2)  

O(7)-Co(2)-O(10)              92.7(2)  

O(3)-Co(2)-O(9)                87.7(2)  

O(3)-Co(2)-O(10)              88.4(2)  

O(3)-Co(2)-O(7)                172.7(2)  

Co(1)-O(2)-Co(2)              98.8(2)  

Co(1)-O(6)-Co(2)              98.1(2)  

 

Co(1)…Co(2)                    2.9961(7) 

Co(1)-O(1)                        1.876(3) 

Co(1)-O(5)                        1.883(3) 

Co(1)-N(2)                        1.903(3) 

Co(1)-N(1)                        1.905(3) 

Co(1)-O(2)                        1.917(3) 

Co(1)-O(6)                        1.927(2) 

Co(2)-O(2)                        2.028(3) 

Co(2)-O(6)                        2.047(3) 

Co(2)-O(7)                        2.059(3) 

Co(2)-O(9)                        2.096(3) 

Co(2)-O(3)                        2.096(3) 

Co(2)-N(3)                        2.127(3) 

 

O(1)-Co(1)-O(5)              90.88(12) 

O(1)-Co(1)-N(2)              88.58(12) 

O(5)-Co(1)-N(2)              95.00(12) 

O(1)-Co(1)-N(1)              95.38(12) 

O(5)-Co(1)-N(1)              87.69(11) 

N(2)-Co(1)-N(1)             175.18(12) 

O(1)-Co(1)-O(2)             177.16(11) 

O(5)-Co(1)-O(2)              91.87(11) 

N(2)-Co(1)-O(2)              91.89(11) 

N(1)-Co(1)-O(2)              84.01(11) 

O(1)-Co(1)-O(6)              92.65(11) 

O(5)-Co(1)-O(6)             176.43(11) 

N(2)-Co(1)-O(6)              84.56(11) 

N(1)-Co(1)-O(6)              92.51(11) 

O(2)-Co(1)-O(6)              84.60(11) 

O(2)-Co(2)-O(6)              78.81(10) 

O(2)-Co(2)-O(7)              92.48(11) 

O(6)-Co(2)-O(7)              91.13(11) 

O(2)-Co(2)-O(9)             172.82(11) 

O(6)-Co(2)-O(9)              94.20(11) 

O(7)-Co(2)-O(9)              89.29(12) 

O(2)-Co(2)-O(3)              90.13(10) 

O(6)-Co(2)-O(3)              89.71(10) 

O(7)-Co(2)-O(3)             177.37(12) 

O(9)-Co(2)-O(3)              88.16(11) 

O(2)-Co(2)-N(3)              96.74(12) 

O(6)-Co(2)-N(3)             174.92(12) 

O(7)-Co(2)-N(3)              91.53(13) 

O(9)-Co(2)-N(3)              90.16(13) 

O(3)-Co(2)-N(3)              87.82(12) 

Co(1)-O(2)-Co(2)             98.77(11) 

Co(1)-O(6)-Co(2)             97.81(11) 

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+1 
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Table S2 The bond valence sum calculation for 1-3. 

 

 

 

 

 

 

 

 

 

 

Fig. S1 View of a 1D chain linked by intermolecular hydrogen bonding in 

Complex 1. Hydrogen atoms are omitted for clarity.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2 View of a 1D chain linked by intermolecular hydrogen bonding in 

Complex 2. Hydrogen atoms are omitted for clarity.  

 

 1 2 3 

Co-site Co(II) Co(III) Co(II) Co(III) Co(II) Co(III) 

Co(1) 3.49 3.16 3.47 3.13 3.52 3.19 

Co(2) --- --- 2.10 1.91 2.19 1.98 
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Fig. S3 View of different type of intermolecular hydrogen bonding in Complex 

3. Hydrogen atoms are omitted for clarity. O12, O13 and O14, O15 are two 

disordered water molecules respectively 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S4 Cyclic voltammogram of 1 in DMF (showing only Co
III

/Co
II

 peak) with 

0.1 M TBAP as supporting electrolyte.  The measurements were conducted using 

a glassy carbon working electrode at different scan rates as mentioned.  

  



New Journal of Chemistry 

S7 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S5 Cyclic voltammogram of 1 in DMF (showing only the metal centred 

peaks) with 0.1 M TBAP as supporting electrolyte.  The measurements were 

conducted using a glassy carbon working electrode at different scan rates as 

mentioned.  

 

 

 

 

 

 

 

 

 

 

Fig. S6 Cyclic voltammogram of 1 in DMF with 0.1 M TBAP as supporting 

electrolyte. The measurements were conducted using a glassy carbon working 

electrode at different scan rates as mentioned.  
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Fig. S7 Cyclic voltammogram of 2 in DMF with 0.1 M TBAP as supporting 

electrolyte. The measurements were conducted using a glassy carbon worki ng 

electrode at different scan rates as mentioned. 

 

 

 

 

 

 

 

 

 

 

 

Fig. S8 Cyclic voltammogram of 3 in DMF with 0.1 M TBAP as supporting 

electrolyte. The measurements were conducted using a glassy carbon worki ng 

electrode at different scan rates as mentioned.  



New Journal of Chemistry 

S9 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. S9 Cyclic voltammogram of H4L in DMF with 0.1 M TBAP as supporting 

electrolyte. The measurements were conducted using a glassy carbon worki ng 

electrode at different scan rates as mentioned.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S10 ESI-MS (+ve ion mode) of complex 1 in (1:1) methanol:acetonitrile 

with 1% DMF, along with the speciation. Inset shows isotropic distribution of 

the assigned peaks. 
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Fig. S11 ESI-MS (+ve ion mode) of complex 2 in (1:1) methanol:acetonitrile 

with 1% DMF, along with the speciation. Insets show isotropic distribution of 

the assigned peaks. 

 

 

 

 

 

 

 

 

 

 

Fig. S12 ESI-MS (+ve ion mode) of complex 3 in (1:1) methanol:acetonitrile 

with 1% DMF, along with the speciation. Insets show isotropic distribution of 

the assigned peaks.  
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Fig. S13 Inhibition study of catechol oxidation by probucol probed for an hour 

by monitoring the change in absorbance at 400 nm using 500 molar equivalents 

of DTBC and 0.1 M of 1 without probucol (green) and with 40 molar equivalent 

probucol (purple).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S14 ESI-MS (+ve ion mode) of the mixture of methyl ester of p-

chlorophenylalanine with complex 1 in (1:1) methanol:acetonitrile with 1% 

DMF. Reaction condition: 10 M catalyst (1) in air with 3 molar equivalents of 

methyl ester of p-chlorophenylalanine. Insets show isotropic distribution of the 

assigned peaks. 
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Fig. S15 ESI-MS (+ve ion mode) of the mixture of methyl ester of p-

chlorophenylalanine with complex 1 in (1:1) methanol:acetonitrile with 1% 

DMF. (showing m/z from 980 to 1300). Insets show isotropic distribution of the 

assigned peaks. 

 

 

 

 

 

 

 

 

 

 

 

Fig. S16 ESI-MS (+ve ion mode) of the mixture of methyl ester of histidine with 

complex 1 in (1:1) methanol:acetonitrile with 1% DMF. Reaction condition: 10 

M catalyst (1) in air with 3 molar equivalents of methyl ester of histidine.  

Insets show isotropic distribution of the assigned peaks.  
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Fig. S17 ESI-MS (+ve ion mode) of the mixture of methyl ester of histidine with 

complex 1 in (1:1) methanol:acetonitrile with 1% DMF. Reaction condition: 10 

M catalyst (1) in air with 3 molar equivalents of methyl ester of histidine 

(showing m/z from 800 to 1300).  

 

 

 

 

 

 

 

 

 

 

 

Fig. S18 ESI-MS (+ve ion mode) of the mixture of methyl ester of methionine 

with complex 1 in (1:1) methanol:acetonitrile with 1% DMF. Reaction condition: 

10 M catalyst (1) in air with 3 molar equivalents of methyl ester of methionine. 

Insets show isotropic distribution of the assigned peaks.  
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Fig. S19A ESI-MS (+ve ion mode) of the mixture of DTBC with complex 1 in 

(1:1) methanol:acetonitrile with 1% DMF, along with the speciation. Reaction 

condition: 10 M catalyst (1) in air with 500 molar equivalents of DTBC. 

 

 

 

 

 

 

 

 

 

 

 

Fig. S19B ESI-MS (+ve ion mode) of the mixture of DTBC with complex 1 in 

(1:1) methanol:acetonitrile with 1% DMF, with isotopic distribution of the peaks 

assigned in Fig. S19A. 
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Fig. S20 ESI-MS (+ve ion mode) of the mixture of te trachlorocatechol (TCC) 

with complex 1 in (1:1) methanol, acetonitrile mixture with 1% DMF. Reaction 

condition: 10 M catalyst (1) in air with 500 molar equivalents of TCC. Insets 

show isotropic distribution of the assigned peaks.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S21 ESI-MS (+ve ion mode) of the mixture of tetrachlorocatechol(TCC) 

with complex 1 in (1:1) methanol, acetonitrile mixture with 1% DMF. Reaction 

condition: 10 M catalyst (1) in air with 500 molar equivalents of TCC (showing 

m/z from 800 to 1300). Inset shows isotropic distribution of the assigned peaks. 
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Fig. S22 UV-Vis spectra of hydrogen peroxide detection test showing 

characteristic peak of I3
-
 after DTBC oxidation with catalyst 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S23 EPR spectrum of acetonitrile, DMF 9:1 v/v mixture of 1 after addition 

of 500 equivalent of DTBC, recorded at 77K. 
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Fig. S24 
1
H NMR of DTBQ using CDCl3. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S25 
13

C NMR of DTBQ using CDCl3. 


