Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supporting Information

Enhanced Visible-Light Photoelectrochemical Behaviour of Heterojunction Composite with Cu₂O Nanoparticles-Decorated TiO₂ Nanotube Arrays

Jianfang Zhang,^{ac} Yan Wang,^{*ab} Cuiping Yu,^{ab} Xia Shu,^{ab} Lai Jiang,^b Jiewu Cui,^{ab} Zhong Chen,^d Ting Xie^e and Yucheng Wu^{**ab}

The composition of Cu_2O/TiO_2 nanotube electrodes before and after applying 0.5 V have been analyzed using XRD. From the XRD patterns shown in Fig. S1, it is clearly that the peaks of Cu_2O have no much changes before and after applying 0.5 V, and no new phases appear in Cu_2O/TiO_2 nanotube electrodes after applying 0.5 V, indicating that the Cu_2O nanoparticles are stable when applying 0.5 V.

Fig. S1 XRD spectra of Cu_2O/TiO_2 nanotube arrays prepared at -1.0 V (a) before, (b) after photoelectrocatalytic

The composition and crystallization of TiO₂ nanotube arrays annealed at 500 °C after electrodeposition of Cu₂O nanoparticle have been checked by XRD. The XRD result based on the Cu₂O/TiO₂ nanotube arrays prepared at -1.0 V is shown in Fig. S2. From the result, we can find that the Cu₂O have been oxidated to CuO at high annealed temperature. In addition, no shift is observed on the anatase phases of Ti, which indicate that TiO₂ nanotube arrays exist only by anatase phases at 500 °C.

Fig. S2 XRD spectra of Cu₂O/TiO₂ nanotube arrays prepared at -1.0 V (a) before, (b) after thermal heating at 500 °C

From the FESEM and TEM images of the cross-section of Cu_2O/TiO_2 nanotube arrays prepared at -1.2 V, the Cu_2O nanoparticles can be evenly deposited on the inner surfaces of TiO₂ nanotube arrays, as shown in Fig. S3. It is worth mention that we employ a novel and facial square wave voltammetry method to electrodeposit Cu_2O nanoparticles onto TiO₂ nanotube arrays. Due to the potential is dynamic changes during the deposition process, it determine the Cu_2O nanoparticles can be uniformly dispersed on the inner surfaces and interfaces of TiO₂ nanotube arrays and don't form some agglomerates inside the TiO₂ nanotube arrays.

Fig. S3 (a) FESEM image of the cross-section of Cu₂O/TiO₂ nanotube arrays prepared at -1.2 V; (b) TEM image of Cu₂O/TiO₂ nanotubes prepared at -1.2 V.