Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Electronic Supplementary Material (ESI) for New Journal of Chemistry

Supplementary information

Co(II), Ni(II) and Cu(II) complexes with phenylthiazole and thiosemicarbazone-derived ligands: synthesis, structure and cytotoxic effect

Marta Sobiesiak^{a*}, Tadeusz Muzioł^b, Marek Rozalski^c, Urszula Krajewska^c, Elzbieta Budzisz^d

^aCollegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, dr. A. Jurasza 2, 85-094 Bydgoszcz, Poland
 ^bNicolaus Copernicus University, Faculty of Chemistry, Gagarina 7, 87-100 Torun, Poland
 ^cDepartment of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynski 1Str., 90-151 Lodz, Poland
 ^dDepartment of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynski 1 Str., 90-151 Lodz, Poland

Table of Contents

Table S1. FAB-MS data (m/z) of the complexes 1a–9a, 1b–9b.

Table S2. Selected bonds lengths (Å) and valence angles (°) for (1a), (6a), (8a) and (5b).

Table. S3. Dihedral angles between rings in organic ligands.

Figure S1. Crystal network of (**1a**) along *a* axis. For clarity of the figure all hydrogen atoms are omitted.

Figure S2. Crystal network of (6a) viewed along *a* axis.

Figure S3. Crystal network of (5b) along *a* axis. For clarity of the figure all hydrogen atoms are omitted.

compound	molecular ion	(m/z) fragment ions					
1a	-	256.1 [4a] ⁺ , 313.1 [4aCo] ⁺ , 349.1 [4aCoCl] ⁺					
2a	-	$256.0 [4a]^+$, 314.0 $[4aCo]^+$, 376.1 $[4aCoNO_3]^+$					
3a	-	$256.2 [4a]^+, 313.1 [4aCo]^+, 413.2 [4aCoClO_4]^+, 569.3 [(4a)_2Co]^+, 668.2 [(4a)_2CoClO_4]^+$					
5a	-	$256.0 [4a]^+$, 314.0 $[4aNi]^+$, 375.1 $[4aNiNO_3]^+$					
6a	-	$256.0 [4a]^+$, $313.1 [4aNi]^+$, $412.1 [4aNiClO_4]^+$, $568.1 [(4a)_2Ni]^+$, $667.1 [(4a)_2NiClO_4]^+$					
7a	-	256.1 [4a] ⁺ , 318.0 [4aCu] ⁺ , 353.0 [4aCuCl] ⁺					
8a	-	$318.2 [4aCu]^+, 573.3 [(4a)_2Cu]^+, 637.3 [(4a)_2CuNO_3]^+$					
9a	-	$256.2 [4a]^+$, $318.1 [4aCu]^+$, $418.1 [4aCuClO_4]^+$, $574.3 [(4a)_2Cu]^+$					
1b	-	$249.0 [5aCoCl]^+, 404.1 [(5a)_2CoCl]^+$					
3b	-	213.0 [5aCo] ⁺ , 313.0 [5aCoClO ₄] ⁺ , 368.0 [(5a) ₂ Co] ⁺ , 468.0 [(5a) ₂ CoClO ₄] ⁺					
4b	-	213.0 [5aNi] ⁺ , 249.0 [5aNiCl] ⁺					
5b	-	213.0 $[5aNi]^+$, 275.0 $[5aNiNO_3]^+$, 369.1 $[(4a)_2Ni]^+$, 430.2 $[(5a)_2NiNO_3]^+$					
6b	-	213.0 214.0 $[5aNi]^+$, 367.0 $[(4a)_2Ni]^+$, 467.0 $[(5a)_2NiClO_4]^+$					
8b	-	218.0 $[5aCu]_{+}^{+}$, 281.1 $[5aCuNO_{3}]^{+}$, 437.2 $[(5a)_{2}CuNO_{3}]^{+}$					
9b	-	219.0 $[5aCu]^{2+}$, 473.1 $[(5a)_2CuClO_4]^+$					

Table S1. FAB-MS data (m/z) of the complexes 1a-9a, 1b-9b.

Complex	1a		6a		8 a		5b			
Distances [Å]			vu		0 u		00			
	Co1-N1	2.0087(19)	Ni1-O4	2.0692(17)	Cu1-N11	1.982(3)	Ni1-N11	2.033(5)		
	Co1-N10	2.0782(18)	Ni1-O4 ⁱ	2.0692(17)	Cu1-N1	1.984(3)	Ni1-N1	2.070(6)		
	Co1-Cl2	2.2064(6)	Ni1-N1 ⁱ	2.091(2)	Cu1-O3	1.988(3)	Ni1-O43	2.100(5)		
	Co1-Cl3	2.2090(6)	Ni1-N1	2.091(2)	Cu1-N20	2.045(3)	Ni1-O42	2.212(6)		
			Ni1-N10 ⁱ	2.1417(18)	Cu1-N10	2.275(3)	Ni1-S7	2.333(3)		
			Ni1-N10	2.1417(18)	Cu2-O31	1.975(4)	Ni1-S17	2.336(2)		
					Cu2-O31 ⁱ	1.975(4)	Ni2-N31	2.039(6)		
					Cu2-O34	1.984(4)	Ni2-N21	2.058(6)		
					Cu2-O34 ⁱ	1.984(4)	Ni2-O46	2.136(5)		
							Ni2-O47	2.153(5)		
							Ni2-S37	2.372(2)		
							Ni2-S27	2.374(2)		
Angles [°]	N1-Co1-N10	80.28(7)	04-Ni1-04	ⁱ 86.75(11)	N11-Cu1-N1	173.98(12)	N11-Ni1-N1	178.7(2)		
	N1-Co1-Cl2	112.26(5)	O4-Ni1-N1	ⁱ 92.21(7)	N11-Cu1-O3	91.86(12)	N11-Ni1-O43	86.7(2)		
	N10-Co1-Cl2	116.02(5)	O4 ⁱ -Ni1-N1	l ⁱ 85.25(7)	N1-Cu1-O3	89.08(11)	N1-Ni1-O43	93.6(2)		
	N1-Co1-Cl3	110.43(5)	O4-Ni1-N1	85.25(7)	N11-Cu1-N20	80.61(12)	N11-Ni1-O42	91.4(2)		
	N10-Co1-Cl3	118.90(5)	O4 ⁱ -Ni1-N1	92.21(7)	N1-Cu1-N20	96.74(12)	N1-Ni1-O42	87.7(2)		
	Cl2-Co1-Cl3	113.98(3)	N1 ⁱ -Ni1-N1	176.51(9)	O3-Cu1-N20	161.67(12)	O43-Ni1-O42	59.6(2)		
			O4-Ni1-N1	0 ⁱ 170.11(7)	N11-Cu1-N10	108.42(12)	N11-Ni1-S7	96.46(17)		
			O4 ⁱ -Ni1-N1	10 ⁱ 94.96(8)	N1-Cu1-N10	77.50(11)	N1-Ni1-S7	82.83(18)		
			N1 ⁱ -Ni1-N1	10 ⁱ 78.25(7)	O3-Cu1-N10	91.34(11)	O43-Ni1-S7	163.48(18)		
			N1-Ni1-N1	0 ⁱ 104.39(7)	N20-Cu1-N10	106.88(11)	O42-Ni1-S7	104.1(2)		
			O4-Ni1-N1	0 94.96(8)	O31-Cu2-O31 ⁱ	92.9(2)	N11-Ni1-S17	82.44(17)		
			O4 ⁱ -Ni1-N1	170.11(7)	O31-Cu2-O34	158.46(15)	N1-Ni1-S17	98.81(19)		
			N1 ⁱ -Ni1-N1	10 104.39(7)	O31 ⁱ -Cu2-O34	91.53(16)	O43-Ni1-S17	93.76(17)		
			N1-Ni1-N1	0 78.25(7)	O31-Cu2-O34 ⁱ	91.53(16)	O42-Ni1-S17	153.0(2)		
			N10 ⁱ -Ni1-N	10 85.03(10)	O31 ⁱ -Cu2-O34 ⁱ	158.47(15)	S7-Ni1-S17	102.71(10)		
					O34-Cu2-O34 ⁱ	92.1(2)	N31-Ni2-N21	176.1(3)		
							N31-Ni2-O46	88.4(2)		
							N21-Ni2-O46	92.9(2)		
							N31-Ni2-O47	92.5(2)		
							N21-Ni2-O47	91.4(2)		
							O46-Ni2-O47	59.7(2)		
							N31-Ni2-S37	83.64(19)		
							N21-Ni2-S37	92.58(19)		
							O46-Ni2-S37	95.59(19)		
							O47-Ni2-S37	155.2(2)		
							N31-Ni2-S27	96.77(18)		
							N21-Ni2-S27	83.26(18)		
							O46-Ni2-S27	159.04(19)		
							O47-Ni2-S27	99.68(19)		
							S37-Ni2-S27	105.14(9)		
$(6a)^{i}$ -x+1, y, -z+1/2; $(8a)^{i}$ -x, y, -z+1/2										

Table S2. Selected bonds lengths (Å) and valence angles (°) for (1a), (6a), (8a) and (5b).

parameter	(1a)	a) (6a) (8a) (5b)						
			N1 ligand	N11 ligand	N1 ligand	N11 ligand	N21 ligand	N31 ligand
N1 _p /N1 _{ch}	1.24	4.73	10.91	5.76	13.2	11.2	10.9	11.7
$N1_{ch}/S7$	0.77	12.54	14.71	13.80				
S7/C91	8.59	55.67	41.3	30.8				
N1 _p /S7	1.01	14.52	17.7	14.0				
N1 _p /C91	7.89	69.67	52.6	41.3				
N1 _{ch} /C91	9.12	68.20	55.3	43.75				
Rms(N1 _p)	0.002	0.003	0.006	0.005	0.011	0.009	0.012	0.003
Rms(N1 _{ch})	0.010	0.032	0.058	0.084	0.100	0.110	0.090	0.141
Rms(S7)	0.001	0.003	0.008	0.014				
Rms(C91)	0.003	0.001	0.007	0.004				

Table. S3. Dihedral angles between rings in organic ligands.

Figure S1. Crystal network of (**1a**) along *a* axis. For clarity of the figure all hydrogen atoms are omitted.

Figure S2. Crystal network of (6a) viewed along *a* axis.

Figure S3. Crystal network of (**5b**) along *a* axis. For clarity of the figure all hydrogen atoms are omitted.