Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Electronic Supplementary Information

M²⁺, Ln³⁺-Catalyzed Synthesis of [1,2,4]Triazine Core via Intramolecular C-H/N-H Functionalization and C-N Bond Formation (M = Mn, Zn, Cd; Ln = Dy, Tb)

Wen-Bin Chen, Zhi-Xin Li, Xin-Wei Yu, Meng Yang, Yan-Xuan Qiu and Wen Dong*

School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for

Environmentally Functional Materials and Technology, Guangzhou University,

Guangzhou 510006, P. R. China

Electronic Supplementary Information – Table of Contents

- 1. Experimental
- 2. X-ray crystallography and data collection
- 3. The atomic labeling diagram of 3 and 4.
- 4. The molecular packing diagrams of 1-5.
- 5. Proposed catalytic cycle diagram.
- 6. The photoluminescent spectra of the aqueous solution of 2-6
- 7. The photoluminescent spectra of crystal phase of 2-6
- 8. TD-DFT calculated state energy diagrams of 1.
- 9. Calculations
 - 9.1 Cartesian coordinates and total energies of enol isomer of 1
 - 9.2 Cartesian coordinates and total energies of keto isomer of 1
 - 9.3 Cartesian coordinates and total energies of another keto isomer of 1
- **10. NMR Spectra**

Experimental

Materials and Physical Measurements. All the commercial reagents and solvents were used without further purification unless otherwise stated. IR spectra were recorded as pressed KBr pellets on a Bruker Tensor 27 spectrophotometer. Elemental analyses were carried out using a Perkin-Elmer analyzer model 240. Luminescence spectra were recorded with an F-4500 fluorescence spectrophotometer. ¹H NMR spectra were recorded on a 400 MHz Digital NMR Spectrometer. Fluorescent Imaging experiments were conducted with Nikon 55i Fluorescent Microscope.

X-ray crystallography and data collection: The crystals were filtered from the solution and immediately coated with hydrocarbon oil on the microscope slide. Suitable crystals were mounted on glass fibers with silicone grease and placed in a Bruker Smart APEX(II) area detector using graphite monochromated MoK α radiation ($\lambda = 0.71073$ Å) at 296(2) K. The structures were solved by direct methods and successive Fourier difference syntheses (SHELXS-97) and refined by full–matrix least-squares procedure on F^2 with anisotropic thermal parameters for all non-hydrogen atoms (SHELXL-97).^[1] Hydrogen atoms were added theoretically and were riding on their parent atoms. Crystallographic data for **1-5**. **1**: C₃₂H₂₆N₂₀O₇, Mr = 802.73, monoclinic, space group C2/c, a = 26.008(3) Å, b = 6.8360(8) Å, c = 22.709(3) Å, $\beta = 123.384(2)^\circ$, V = 3371.3(7) Å³, Z = 4, Dc = 1.582 g· cm⁻³, F(000) = 1656, $\mu = 0.119$ cm⁻¹, $R_I = 0.0432$, $wR_2 = 0.1266$. **2**: C₁₆H₁₆MnN₁₀ O₆, Mr = 499.33, monoclinic, space group C2/c, a = 19.315(4) Å, b = 8.0880(16) Å, c = 11.970(2) Å, $\beta = 94.203(9)^\circ$, V = 3371.3(7) Å³, Z = 4, Dc = 1.778 g·cm⁻³, F(000) = 1020, $\mu = 0.773$

cm⁻¹, $R_1 = 0.0280$, $wR_2 = 0.0670$. **3**: C₁₆H₁₆ZnN₁₀O₆, Mr = 509.78, monoclinic, space group *C2/c*, a = 19.020(3) Å, b = 8.0801(12) Å, c = 11.9530(17) Å, $\beta = 94.235(8)^\circ$, V = 1832.0(5) Å³, Z = 4, Dc = 1.848 g·cm⁻³, F(000) = 1040, $\mu = 1.407$ cm⁻¹, $R_1 = 0.0251$, $wR_2 = 0.0639$. **4**: C₁₆H₁₆CdN₁₀O₆, Mr = 556.80, monoclinic, space group *C2/c*, a = 19.4542(7) Å, b = 8.1626(3) Å, c = 12.0696(5) Å, $\beta = 94.203(2)^\circ$, V = 1911.46(13) Å³, Z = 4, Dc = 1.935g·cm⁻³, F(000) = 1112, $\mu = 1.206$ cm⁻¹, $R_1 = 0.0202$, $wR_2 = 0.0671$. **5**: C₁₈H₁₆N₁₀O₃, Mr = 420.41, monoclinic, space group *P21/n*, a = 6.8792(11) Å, b = 20.841(3) Å, c = 13.359(3) Å, $\beta = 103.471(12)^\circ$, V = 1862.5(5) Å³, Z = 4, Dc = 1.499g·cm⁻³, F(000) = 872.0, $\mu = 0.110$ cm⁻¹, $R_1 = 0.0549$, $wR_2 = 0.1391$. Crystallographic Data Centre under reference numbers 940757 for **1**, CCDC 940758 for **2**, 940759 for **3**, 940760 for **4**, 979363 for **5**. The data can be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB21EZ, UK (Fax: t44 1223336 033; E-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Figure S1. (a), (b) The atomic labeling diagram of **3**, **4**, respectively. All H atoms have been omitted for clarity.

Figure S2. The supramolecular structure packed by π - π stacking, O–H···O and O–H···N

hydrogen-bonding interaction in 1(a) and 2(b).

Figure S3. (a), (b) The supramolecular structure packed by π - π stacking, O–H···O and O–H···N

hydrogen-bonding interaction in 3 and 4, respectively.

(1) decarboxylation

(2)Wacker-type cyclization

Scheme S1 Proposed catalytic cyclization containing decarboxylation(1) and Wackertype cyclization (2) using 5-azo-(1,2,4-triazolyl) salicylic acid as model reaction substrate.

Figure S5. (a)-(e) The photoluminescent spectra of the aqueous solution of **2-6**, respectively. Insert is fluorescent images under blue light excitation.

Figure S6. (a)-(e) The photoluminescent spectra of crystal phase of **2-6**, respectively. Insert is green-yellow imaging and red imaging taken by the fluorescence microscopy under blue and green light excitation.

Figure S7 TD-DFT calculated state energy diagrams: (a), (b) for enol isomer in 1.

9. Calculations

9.1 Cartesian coordinates and total energies of enol isomer of 1

B3LYP 6-31g (d) E = -733.067300783 a.u.

Center	Atomic	Atomic Type	Coordinates (Angstroms)		
Number	Number		Х	Y	Ζ
1		0	-4.800900	5.095100	12.789100
2	1	0	-4.328700	4.766700	13.396700
3	7	0	-5.130300	4.687900	8.041000
4	7	0	-5.653600	5.889900	7.688900
5	7	0	-5.225700	4.623200	5.848500
6	7	0	-4.053888	2.813961	6.938524
7	7	0	-3.791028	2.312954	8.123041
8	6	0	-5.685700	5.786000	6.368200
9	6	0	-4.873300	3.936200	6.935000
10	6	0	-4.253300	2.941500	9.298000
11	6	0	-4.832000	4.231500	9.301300

12	6	0	-5.049100	4.956800	10.464600
13	1	0	-5.453500	5.794200	10.442400
14	6	0	-4.640800	4.384600	11.660900
15	6	0	-4.061800	3.090600	11.686500
16	1	0	-3.807900	2.717300	12.499800
17	6	0	-3.871500	2.384400	10.531700
18	1	0	-3.490600	1.536700	10.561900
19	8	0	-3.123900	0.846300	4.740500
20	1	0	-3.319000	1.373400	5.368200
21	1	0	-2.928800	1.373400	4.112900
22	1	0	-6.068306	6.569996	5.748634

9.2 Cartesian coordinates and total energies of keto isomer of ${\bf 1}$

B3LYP 6-31g (d), E =-733.023543943 a.u.

Center	Atomic Number	Atomic Type	Coordinates (Angstroms)		
Number			Х	Y	Ζ
1	8	0	-4.800900	5.095100	12.789100
2	7	0	-5.130300	4.687900	8.041000
3	7	0	-5.653600	5.889900	7.688900
4	7	0	-5.225700	4.623200	5.848500
5	7	0	-4.318000	2.691300	6.979200
6	7	0	-4.008500	2.215500	8.148600
7	6	0	-5.685700	5.786000	6.368200
8	1	0	-6.007600	6.472300	5.828900
9	6	0	-4.873300	3.936200	6.935000
10	6	0	-4.253300	2.941500	9.298000
11	6	0	-4.832000	4.231500	9.301300
12	6	0	-5.049100	4.956800	10.464600
13	1	0	-5.453500	5.794200	10.442400

14	6	0	-4.640800	4.384600	11.660900
15	6	0	-4.061800	3.090600	11.686500
16	1	0	-3.807900	2.717300	12.499800
17	6	0	-3.871500	2.384400	10.531700
18	1	0	-3.490600	1.536700	10.561900
19	8	0	-3.123900	0.846300	4.740500
20	1	0	-3.319000	1.373400	5.368200
21	1	0	-2.928800	1.373400	4.112900
22	1	0	-5.165425	4.348449	4.888876

9.3 Cartesian coordinates and total energies of another keto isomer of $\mathbf{1}$

B3LYP 6-31g (d), E = -733.035929942 a.u.

Atomic	Atomic	Coordinates (Angstroms)		
Number	Туре	Х	Y	Ζ
8	0	-4.845970	5.086713	12.787053
7	0	-5.132583	4.699333	8.035538
7	0	-5.400714	5.959187	7.690100
7	0	-4.986188	4.766722	5.908045
7	0	-4.318000	2.691300	6.979200
7	0	-4.008500	2.215500	8.148600
6	0	-5.374499	5.976888	6.365308
1	0	-5.562707	6.704566	5.817097
6	0	-4.877769	3.964196	6.906790
6	0	-4.253300	2.941500	9.298000
6	0	-4.832000	4.231500	9.301300
6	0	-5.049100	4.956800	10.464600
	Atomic Number 8 7 7 7 7 7 6 1 6 1 6 6 6 6 6 6	Atomic Number Atomic Type 8 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0	$\begin{array}{c ccccc} Atomic & Coor \\ \hline Number & Type & X \\ \hline \\ \hline \\ \hline \\ 8 & 0 & -4.845970 \\ \hline \\ 7 & 0 & -5.132583 \\ \hline \\ 7 & 0 & -5.400714 \\ \hline \\ 7 & 0 & -4.986188 \\ \hline \\ 7 & 0 & -4.986188 \\ \hline \\ 7 & 0 & -4.318000 \\ \hline \\ 7 & 0 & -4.008500 \\ \hline \\ 6 & 0 & -5.374499 \\ \hline \\ 1 & 0 & -5.562707 \\ \hline \\ 6 & 0 & -4.877769 \\ \hline \\ 6 & 0 & -4.832000 \\ \hline \\ 6 & 0 & -5.049100 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

13	1	0	-5.453500	5.794200	10.442400
14	6	0	-4.640800	4.384600	11.660900
15	6	0	-4.110803	3.069823	11.704941
16	6	0	-3.871500	2.384400	10.531700
17	8	0	-3.123900	0.846300	4.740500
18	1	0	-3.319000	1.373400	5.368200
19	1	0	-2.928800	1.373400	4.112900
20	1	0	-5.651640	6.722435	8.285489
21	1	0	-3.944762	2.591950	12.647792
22	1	0	-3.516859	1.376239	10.584057

Figure S8. ¹H NMR Spectra recorded in DMSO (δ , ppm) of 5-azo-(3-carboxyl-1,2,4-triazolyl) salicylic acid.

Figure S9. ¹H NMR Spectra recorded in DMSO (δ, ppm) of 4-azo-(1,2,4-triazolyl) phenol.

Figure S10. ¹H NMR Spectra recorded in DMSO (δ , ppm) of 4-azo-(3-carboxyl-1,2,4-triazolyl) phenol.

Figure S11. ¹H NMR Spectra recorded in DMSO (δ, ppm) of 4-azo-(1,2-pyrazolyl) phenol.

Figure S12. ¹H NMR Spectra recorded in DMSO (δ, ppm) of 5-azo-(1,2-pyrazolyl) salicylic acid.

Figure S13. ¹H NMR Spectra recorded in DMSO (δ , ppm) of 1.

Figure S14. ¹H NMR Spectra recorded in DMSO (δ , ppm) of 5.

Figure S15. ¹H NMR Spectra recorded in DMSO (δ , ppm) of 6.

References

[1] (a) Sheldrick, G. M. SHELXS-97, Program for solution of crystalstructures;
University of Göttingen: Göttingen, Germany, 1997; (b) Sheldrick, G. M.
SHELXL-97, Program for refinement of crystalstructures; University of Göttingen: Göttingen, Germany 1997.