Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supporting Information

Key Role of Ancillary Ligand in Imparting Blue Shift in Electroluminescence Wavelength in Ruthenium Polypyridyl Light-Emitting Diodes

Hashem Shahroosvand ^a*, Shiva Rezaei ^a, Ezeddin Mohajerani^b, Malek mahmoudi^b, Mohammad Ali Kamyabi ^a, Shohreh Nasiri ^a

Table S1.

The wavelength of electroluminescence (EL) and photoluminescence (PL) emissions of reported ruthenium complexes.

	2	2	
Complex/reactant	λ_{em} (nm)	$\lambda_{\rm EL}$ (nm)	ref
$Ru(bpy)_3^{2+}$	608	608	1,2,3
$Ru(bpy)_3^{2+}/C_2 O_4^{2-}$	610	610	4
$Ru(bpy)_{3}^{2+/}C_{2}O_{4}^{2-}$		591	5
$Ru(bpy)_3^{2+}/S_2 O_8^{2-}$	625	625	4,6
Ru(bpy) ₃ ²⁺ /TPrA	610	610	7
$Ru(dmbp)_3^{2+}/C_2O_4^{2-}$		594	5
$Ru(phen)_3^{2+}$	590	590	8
$Ru(phen)_3^{2+}/C_2 O_4^{2-}$		585	5
Ru(dmphen) ₃ ²⁺ / $C_2 O_4^{2-}$		591	5
$Ru(terpy)_3^{2+}$		660	8
Ru(bpz) ₃ ²⁺	585	585	9,10
$Ru(bpz)_3^{2+}/S_2 O_8^{2-}$	585	590	11
$Ru(dp-bpy)_3^{2+}$	635	635	12

Ru(dp-phen) ₃ ²⁺	615	615	12
(bpy) ₂ Ru(bphb) ²⁺	624	624	13
(bpy) ₂ Ru(bphb) ²⁺ /TPrA	624	624	13
$(bpy)_2 Ru(bphb)^{2+} / S_2 O_8^{2-}$	624	624	13
$[(bpy)_2Ru]_2(bphb)^{4+}$	624	624	13
[(bpy) ₂ Ru] ₂ (bphb) ⁴⁺ /TPrA	624	624	13
$[(bpy)_2Ru]_2(bphb)^{4+}S_2 O_8^{2-}$	624	624	13
(bpy) ₂ Ru(AZA-bpy) ²⁺ /TPrA	603	603	14
(bpy) ₂ Ru(AZA-bpy) ²⁺ /TPrA	613	613	14
(bpy) ₂ Ru(CE-bpy) ²⁺ /TPrA		650	15
(bpy) ₂ Ru(CE-bpy) ²⁺ /TPrA		655	15
$Ru(v-bpy)_3^{2+}$	630	650	16
(bpy) ₂ Ru(DC-bpy) ²⁺	629	629	17
(bpy) ₂ Ru(DM-bpy) ²⁺	605	605	17
$(bpy)_2Ru(dpen-bpy)^{2+}/PF_6^{-}$	612	612	18

$Ru(m-bpy)_{3}^{2+}/PF_{6}^{-}$	609	612	18
Ru(dtb-bpy) ₃ ²⁺ /PF ₆ -	610	611	18
(bpy) ₂ Ru(DIM) ²⁺	600	600	19
$(bpy)_2Ru(PBIm-H)^{2+}/PF_6^{-1}$		680	20
[Ru(tpy)(tpy-COOEt)]/PF ₆ -	706	706	21
Ru(DM-bpy) ₃ ²⁺	604	615	22
$(bpy)_2 Ru(dbeb)^{2+} / PF_6^{-}$	642	640	23
$(bpy)_2Ru(pbq)^{2+}$	900	900	24
(PBIm-H) ₂ Ru(pbq) ²⁺	945	945	24
(PBIm-H) ₂ Ru(acac) ²⁺	850	880	24
[Ru(PBIM-H) ₂] ₂ (pbq) ⁺²	1040	1040	24
$Ru(tpy)(trz)^{2+}/PF_{6}^{-}$	723	717	25
Ru(tpy-COOEt)(trz) ²⁺ /PF ₆ -	717	725	25
$(bpy)_2 Ru(Mt-bpy)^{2+}/PF_6^-$	625	557	26

RuTRu	625	598	26
$(bpy)_2Ru(aa-bpy)^{2+}/PF_6^-$	649	699	27
Ru ₂ (bpy) ₄ (im-phen) / ClO ₄ -	638	655	28
$(bpy)_2Ru(Eh-bpy)^{2+}/PF_6^-$	427	600	29
$(bpy)_2Ru(Hmh-bpy)^{2+}/PF_6^{-}$	427	600	29
(H2MPy3,4DMPP)Ru(bpy)2Cl /PF ₆ -	655	656	30
$Ru_2(bpy)_2(tpy)_2(BTB)^{2+}$	680	710	31
$Ru_2(bpy)_2(tpy)_2(4-TBN)^{3+}$	676	680	31
$[Ru(bpy)_2]_2(bmpa-bpy)^{+2}/PF_6^{-1}$	642	596	32
$[Ru(bpy)_2]_2(bmdpa-bpy)^{+2/}$ PF_6^-	638	570	32
$[Ru(bpy)_2]_2(bmna-bpy)^{+2}/PF_6^{-1}$	636	570	32

m-bpy = 4-methyl-2,2'-bipyridine

- **dtb-bpy** = 4,4'-di-tert-butyl-2,2'-bipyridine
- **dpen-bpy** = 4,4'-di-n-pentyl-2,2'-bipyridine
- **DIM** = 4,7-dimethyl-1,10-phenanthroline
- **PBIm-H** =2-(2-pyridyl)-1H-benzoimidazole

tpy= 2,2',6',2"-terpyridine

tpy-COOEt = 2,2',6',2", terpyridine-4'-carboxylic acid ethyl ester

DM-bpy = 4,4'-dimethyl-2,2'- bipyridine

- **dbeb**= 4,4'-dibutyl ester-2,2'-bipyridine
- pbq=2,3-bis(2-pyridyl)benzoquinoxaline
- acac=acetylacetone
- trz= 2-phenyl-4,6-dipyridin-2-yl-1,3,5-triazine
- RuTRu = bis-2,2'-bipyridyl-ruthenium-bis-[2-((E)-4'-methyl-2,2'-bipyridinyl-4)-ethenyl]-
- thienyl-bis-2,2'-bipyridyl-ruthenium tetra hexafluorophosphate
- Mt-bpy =4-methyl-4'-(2-thienylethenyl)-2,2'-bipyridine
- aa-bpy= Acrylic acid 4'-acryloyloxymethyl-2,2'-bipyridinyl-4-ylmethyl ester
- **im-phen** =1,2-bis(4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenoxy)ethane
- **Eh-bpy** =4,4'-bis(3-ethylheptyl)-2,2'-bipyridine
- Hmh-bpy =4-dihexylmethyl-4'-heptyl-2,2'-bipyridine
- H2MPy3,4DMPP = meso-tris-3,4-dimethoxyphenyl-mono-(4-pyridyl)porphyrin
- **4-TBN** = 4-(1H-tetrazol-5-yl)benzonitrile
- **BTB** = bis(1H-tetrazol-5-yl)benzene
- **bpy** = 2,2'-bipyridine
- $C_2 O_4^{2-} = \text{oxalate ion}$
- $S_2 O_8^{2-}$ = persulfate or peroxydisulfate
- **TPrA** = tri-n-propylamine
- **dmbp** = 4,4'-Me2bpy and DM-bpy = 4,4'-dimethyl-2,2'-bipyridine
- **phen** = 1,10-phenanthroline
- **terpy** = 2,2',2"-terpyridine
- **bpz** =2,2'-bipyrazine

dp-bpy = 4,4'-biphenyl-2,2'-bipyridyl

- **dp-phen** =4,7-diphenyl-1,10-phenanthroline
- **dmphen** = 4,7-dimethyl-1,10-phenanthroline
- **bphb** = 1,4-bis(4'-methyl-2,2'-bipyridin-4-yl)benzene
- AZA-bpy = 4-(N-aza-18-crown-6-methyl-2,2'-bipyridine
- CE-bpy= bipyridine ligand where a crown ether (15-crown 5) is bound to the bpy ligand in the
- 3- and 3'-positions
- **v-bpy** =4-vinyl-4'-methyl-2,2'-bipyridine
- **DC-bpy** = 4,4'-dicarboxy-2,2'-bipyridine
- **PF**₆⁻=hexafluorophosphate
- **bmpa-bpy** =bis(4'-methyl-2,2'-bipyridinyl-4-carbonyl)-(1,4-phenylediamine)
- **bmdpa-bpy** =bis(4'-methyl-2,2'-bipyridinyl-4-carbonyl)-(1,4-diphenylediamine)
- **bmna-bpy** =bis(4'-methyl-2,2'-bipyridinyl-4-carbonyl)-(1,4-naphthalenediamine)

	Absorption:	Emission:	
Compound	λ _{max} ,nm(logε)	$\lambda_{em}, nm (ø_{em})$	Reference
$[Ru(dpp)_3]^{2+}$	455 (1.54)		33
$[Ru(dpq)_3]^{2+}$	500 (1.51)	716	33
$[Ru(phen)_2(dpp)]^{2+}$	465 (1.06)	652	33
$[Ru(bpy)_2(dpp)]^{2+}$	464 (1.15)	660	33
$[Ru(phen)_2(dpq)]^{2+}$	516 (1.10)	756	33
$[Ru(bpy)_2(dpq)]^{2+}$	517 (0.84)	760	33
[Ru(bpy) ₂ (tpphz)] ²⁺	449 (1.72)	628 (0.100)	34
[Ru(bpy) ₂ (dppx)] ²⁺	446 (2.27)	623 (0.088)	34
$[Ru(bpy)_2(dppm2)]^{2+}$	447 (2.28)	630 (0.090)	34
$[Ru(bpy)_2(dppp2)]^{2+}$	441 (2.28)	745 (<0.005)	34
[Ru(bpy) ₂ (dppz)] ²⁺	445 (1.63)	631 (0.083)	35
[Ru(bpy) ₂ (dpqp)] ²⁺	457	618 (0.76)	35
$[Ru(phen)_2(dicnq)]^{2+}$	445 (4.33)	613 (0.012)	36
[Ru(phen)(dicnq) ₂] ²⁺	441 (4.31)	610 (0.004)	36
[Ru(bpy) ₂ (dicnq)] ²⁺	439 (1.75)	640 (0.0055)	37
[Ru(bpy) ₂ (dppzc)] ²⁺	448 (1.95)	630 (0.009)	37

Table S2. Absorption and emission properties of Ru(dpq) derivates.

$[Ru(bpy)(dppzc)_2]^{2+}$	431 (2.51)		37
$[Ru(phen)_2(dppzc)]^{2+}$	431 (2.43)		37
[Ru(bpy) ₂ (dpqOHCOOH)] ²⁺	455 (1.78)	620 (0.068)	37
$[Ru(bpy)_2(dpq(OH)_2)]^{2+}$	453 (1.56)	627 (0.087)	37
$[Ru(phen)_2(dppz)]^{2+}$	439(2.23)	618	38
[Ru(phen) ₂ (dppx)] ²⁺	440(2.1)	610	38
$[Ru(phen)_2(dppm2)]^{2+}$	441(2.25)	615	38
[Ru(phen) ₂ (dppa)] ²⁺	438(2.34)	612	38
[Ru(phen) ₂ (dppb)] ²⁺	439(2.14)	660	38
$[Ru(phen)_2(dppp2)]^{2+}$	439(2.12)	620	38
$[Ru(phen)_2(dppp3)]^{2+}$	439(2.11)	616	38
[Ru(phen) ₂ (dppn)] ²⁺	443(2.56)	606	38

Dpp 2,3-bis(2'-pyridyl)pyrazine)

dpq Dipyrido[3,2-*f*:2',3-h]quinoxaline

tpphzTetrapyrido[3,2-a:2',3'-c:3",2"-h:2,3"'-j]phenazine

dppx 11,12-Dimethyl-dipyrido[3,2-a:2',3'-c]phenazine

dppm 10-Dimethyl-dipyrido[3,2-a:2',3'-c]phenazine

dppp Pyrido[2',3':5,6]pyrazino[2,3*-f*][1,10]phenanthroline

dppz Dipyrido[3,2-a:2',3'-c]phenazine

dpqp Dipyrido[2,3-a:3',2'-c]quinolino[3,2-*j*]phenazine

dicnq 6,7-dicyanodipyrido[2,2-*d*:2',3'-*f*]quinoxaline

dppzc dipyrido[3,2-*a*:2',3'-*c*]- phenazine-2-carboxylic acid

dppn 4,5,9,16-Tetraaza-dibenzo[a,c]naphthacene

Figure S2. Cyclic voltammogram of S104 in 0.1 M TBAP/MeCN solution at a Pt disk electrode (2 mm diameter), T = 25 °C, scan rate 100 mVs⁻¹: (A) Scan from -0.2 to -1.7 V; (B) scan from 0.2 to 1.7 V.

Refrences:

- [1] N. Tokel, A. J. Bard, J. Am. Chem. Soc. 1972, 94, 2862.
- [2] R. S. Glass, L. R. Faulkner, J. Phys. Chem. 1981, 85, 1160.
- [3] W. L.Wallace, A. J. Bard, J. Phys. Chem. 1979, 83, 1350.
- [4] I. Rubinstein, A. J. Bard, J. Am. Chem. Soc. 1981, 103, 512.
- [5] F. Kanoufi, A. J. Bard, J. Phys. Chem. B. 1999, 103, 10469.
- [6] H. S. White, A. J. Bard, J. Am. Chem. Soc. 1981, 104, 6891.
- [7] J. K. Leland, M. J. Powell, J. Electroanal. Chem. 1991, 318, 91.
- [8] N. E. Tokel-Takvoryan, R. E. Hemingway, A. J. Bard, J. Am. Chem. Soc. 1973, 95, 6582.
- [9] J.Velasco, I. Rubinstein, R. J. Crutchley, A.B. P.Lever, A. Bard, Inorg. Chem. 1983, 22, 822
- [10] J. G. Velasco, J. Phys. Chem. 1988, 92, 2202.
- [11] S. Yamazaki-Nishida, Y. Harima, K. Yamashita, J. Electroanal. Chem. 1990, 283, 455.
- [12] J. Ouyang, A. J. Bull. Bard, Chem. Soc. Jpn. 1988, 61, 17.
- [13] M. M. Richter, A. J. Bard, W. Kim, R. S. Schmehl, Anal. Chem. 1998, 70, 310.
- [14] B. D. Muegge, M. M. Richter, Anal. Chem. 2002, 74, 547.
- [15] R. Y. Lai, M. Chiba, N. Kitamura, A. Bard, Anal. Chem. 2002, 74, 551
- [16] H. Abruna, A. J. Bard, J. Am. Chem. Soc. 1982, 104, 2641.
- [17] D. Bruce, J. McCall, Richter, M. M. Analyst. 2002, 127, 125.

[18] S. Bernhard, J. Barron, P. Houston, H.Abruna, J. Ruglovksy, X. Gao, G.Malliaras, J. Am. Chem. Soc. 2002, 124, 13624.

- [19] J. Yang, K. Gordon, Chem. Phys. Lett. 2003, 372, 577.
- [20] Y. Chuai, D. N. Lee, C. Zhen, J. H. Min, B. H. Kimb, D. Zou, Synth. Met. 2004, 145, 259.
- [21] H. J. Bolink, L. Cappelli, E. Coronado, P. Gavina, Inorg. Chem. 2005, 44, 5966.
- [22] S. M. Chang, C. H. Fan, C. C. Lai, Y. C. Chao, S. C. Hu, Surf. Coat. Technol. 2006, 200, 3289.
- [23] H. Xia, Y. Zhu, D. Lu, M. Li, C. Zhang, B.Yang, Y. Ma, J. Phys. Chem. B. 2006, 110, 18718.
- [24] S. Xun, J. Zhang, X. Li, D. Ma, Z. Y. Wang, Synth. Met. 2008, 158, 484.

[25] H. J. Bolink, E. Coronado, R. D. Costa, P.Gavina, E. Orti, S. Tatay, *Inorg. Chem.* 2009, 48, 3907.

- [26] M. Li, J. Liu, L. Sun, J. Pan, C. Zhao, J. Organomet. Chem. 2008, 693, 46.
- [27] E. Puodziukynaite, J. L. Oberst, A. L. Dyer, J. R. Reynolds, J. Am. Chem. Soc. 2012, 134, 968.
- [28] C. Ju, C. H. Chen, C. L. Yuan, K. Z. Wang, Thin Solid Films. 2011, 519, 3883.
- [29] I. Oner, C. Sahin , C. Varlikli, Dyes Pig., 2012, 95, 23.
- [30] R. Pyati, M. Richter, Annu. Rep. Prog. Chem., Sect. C, 2007, 103, 12.
- [31] S. Stagni, A. Palazzi, S. Zacchini, B. Ballarin, C. Bruno, M. Marcaccio, F. Paolucci, M.
- Monari, M. Carano, A. J. Bard, Inorg. Chem. 2006, 45, 695.
- [32] M. Li, J. Liu, C. Zhao, L. Sun, J. Organomet. Chem. 2006, 691, 4189.
- [33] A. W. Wallace, W. R. Murphy, J. D. Petersen, Inorg. Chim. Acta. 1989, 166, 41.
- [34] Y. Sun, D. A. Lutterman, C. Turro, Inorg. Chem. 2008, 47, 6427.
- [35] Y. Sun, S. N. Collins, L. E. Joyce, C. Turro, Inorg. Chem. 2010, 49, 4257.
- [36] A. Ambroise, B. G. Maiya, *Inorg. Chem.* **2000**, *39*, 4264.
- [37] B. Gholamkhass, K. Koike, N. Negishi, H. Hori, K. Takeuchi, Inorg. Chem. 2001, 40, 756.
- [38] R. M. Hartshorn, J. K. Barton, J. Am. Chem. Soc., 1992, 114, 5919.