Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supporting information

Comparative studies on OLED performances of chloro and

fluoro substituted Zn (II) 8-hydroxyquinolinates

Yanping Huo^{*a,c*}*, Jiguo Lu^{*a*}, Tianhua Lu^{*a*}, Xiaoming Fang^{*a*}, Xinghua Ouyang^{*b,*}*, Li Zhang^{*a*}, Guozan Yuan^{*d*}*

^a School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

^bNingbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

^cKey laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Cheimstry, Chinese Academy of Sciences, Shanghai 200032, China

^d School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China

Table of Contents

1 Copies of ¹ H NMR and ¹³ C NMR Spectra of Products	S2-8
2 Copies of ESI-MS Spectra of Products	S6-7
3 Copies of Molecular orbital for 5-6	S7-9

¹H NMR of **1**

-75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 f1 (ppm)

¹H NMR of **3**

¹⁹F NMR of **3**

¹³C NMR of **3**

¹H NMR of **4**

ESI-MS of 1

ESI-MS of 5

ESI-MS of **6**

The energy levels of **5** and **6** have been calculated by TD-DFT in Gaussian 03.The results were similar to the energy levels of **5** and **6** calculated by using the DFT(density functional theory) model of a DMol3 package in Materials Studio

(version 5.5). The LUMO energy levels of the complexes **5** and **6** are calculated to be -3.095 and -3.312 eV, respectively. The HOMO energy levels of the complexes **5** and **6** are calculated to be -4.279 and -4.364 eV, respectively. The calculated HOMO–LUMO energy gaps (E_g) obtained from TD-DFT calculations were 1.184 and 1.052 eV, respectively, for complexes **5** and **6**.

5 HOMO (-4.279 eV)

5 LUMO (-3.095 eV)

6 HOMO (-4.364 eV)

6 LUMO (-3.312 eV)