Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Electronic Supporting Information

Charge Transfer Aided Selective Sensing and Capture of Picric Acid by Triphenylbenzenes

Pratap Vishnoi, Saumik Sen, G. Naresh Patwari,* and Ramaswamy Murugavel*

Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India-400 076

G. Naresh Patwari

E-mail; naresh@chem.iitb.ac.in,

Ramaswamy Murugavel

rmv@chem.iitb.ac.in

Fig S1. ¹H NMR spectrum of $[(N,N)Me_2]_3$ -TAPB in CDCl₃.

Fig S2. ¹³C NMR spectrum of $[(N,N)Me_2]_3$ -TAPB in CDCl_{3.}

Fig S3. ESI-MS spectrum of $[(N,N)Me_2]_3$ -TAPB.

Fig S4. UV-Vis absorption spectrum (10 μ M; $\lambda_{max} = 203$ nm ($\epsilon = 8 \times 10^4$ M⁻¹cm⁻¹); $\lambda_{max} = 310$ nm ($\epsilon = 1.1 \times 10^5$ M⁻¹cm⁻¹) and emission spectrum (1.0 μ M, $\lambda_{ex} = 310$ nm and $\lambda_{em} = 425$ nm) of [(*N*,*N*)Me₂]₃-TAPB.

Fig S5. Fluorescence quenching profiles of $[(N,N)Me_2]_3$ -TAPB in acetonitrile (1.0 μ M) with various concentrations of PNAC analytes, (a) with PA, (b) with TNT, (c) with DNT, (d) with *m*-DNB and (e) with *p*-DNB.

Fig S6. Time resolved fluorescence decays for an acetonitrile solution of $[(N,N)Me_2]_3$ -TAPB before and after multiple additions of known concentrations of PA.

Fig S7. Benesi-Hildebrand plots of $[(N,N)Me_2]_3$ TAPB with TNT, DNT, *m*-DNB and *p*-DNB.

Fig S8. Job's plot of $[(N,N)Me_2]_3$ TAPB with PA showing complexation in 1:1 stoichiometry.

Fig S9. Benesi-Hildebrand plots of $[(N,N)Me_2]_3$ -TAPB with PA obtained from UV-Vis absorption titration.

Fig S10. The Stern-Volmer plots of $[(N,N)Me_2]_3$ TAPB obtained from fluorescence quenching titration of different PNAC analytes (PA, TNT, DNT, *m*-DNB and *p*-DNB).

Table S1. Details of quenching efficiencies for $[(N,N)Me_2]_3$ -TAPB with various concentrations of different PNAC analytes.

Analyte(s)	Equivalent(s) added	% Quenching	<i>K</i> _{sv} (M ⁻¹)
РА	8	75	3.31 × 10 ⁵
TNT	2250	90	1.90×10^{3}
<i>m</i> -DNB	2100	77	3.03×10^{3}
DNT	1720	92	1.23×10^{3}
<i>p</i> -DNB	875	93	5.44×10^{3}

Chemo-sensor	$K_{\rm sv}$ (M ⁻¹)	Detection Limit	Analyte	Solvent	Ref
hexaphenylsilole	-	4.81 ppb	Only PA	THF/water or water	1
tetraphenylethene	2.7×10^{5}	0.4 ppm	Only PA	water	2
trigonal-prismatic Ru(III)	PA; 1.0×10^5	-	$PA = 45.8 \ \mu M$	methanol	3
cages	TNT; 2.1×10^4		$TNT = 148.9 \ \mu M \ (70 \% \text{ quenching})$		
poly(silylenevinylene)	8.491 x 10 ³ M ⁻¹ in THF	~ 1.0 ppm	94.3 mM in THF; 21.5 mM in	THF/water	4
	$6.36 \ge 10^4 \mathrm{M}^{-1}$ in water		THF/water		
terthiophene	5.7×10^{3}	70 ppb	PA, TNT, DNT and NB	Water	5
pentacenequinone	PA; 6.9×10^4	500 ppb	PA, TNT, DNT and <i>p</i> -DNB;	THF/water	6
-	TNT; 4.3×10^3				
<i>p</i> -phenylenevinylene	5.51×10^{4}	2.71 ppb	PA TNT, DNT, NB, DNB, DNP,	water	7
			selective to PA and DNP		
fluoranthene	$9.9 imes 10^4$	2-200 ppb	only PA	Ethanol	8
tetraphenylethylene	5.7×10^{4}	1.45 ppb	Selective to PA against TNT and	THF/water	9
			DNT		
amphiphilic cellulose	PA; 1.486×10^3 (in THF)	-	PA and DNT	THF or water	10
	& 1.02×10^5 (in H ₂ O)				
	DNT; 2.21 x 10 ² (in THF)				
	1.1 1 x 10 ⁴ (in H ₂ O)				
hexa-peri-hexabenzocoronene	3.2×10^{6} & 2.9×10^{6}	0.9 ppb &	PA, DNB, TNT, DNT, <i>p</i> -NT, NB	THF/water	11
		1.9 ppb			
<i>N</i> -acylhydrazone derivatives	$4.93 \times 10^5, 3.85 \times 10^5,$	-	РА	DMF	12
	5.12 x 10 ⁵ , 3.02 x 10 ⁵				
azine based covalent organic	7.8×10^{5}	-	PA, TNT and DNT	Acetonitrile	13
framework					
hexaphenylbenzene	1.95×10^{5}	6.87 ppb	PA, TNT, DNT and DNB	THF/water	14
triaminophenylbenzene	1.2×10^{5}	-	PA, TNT, DNT, <i>m</i> -DNB and <i>p</i> -DNB	Acetonitrile	15
tris-	3.87×10^{5}	1.50 ppm	PA, TNT, DNT, <i>m</i> -DNB and <i>p</i> -DNB	Acetonitrile/water	this work
dimethylaminophenylbenzene					

Table S2. Comparison of present results with previously reported PA sensors.

Fig S11. ¹H NMR spectrum of $[(N,N)Me_2]_3$ -TAPB-PA in DMSO- d_6 .

Fig S12. X-ray crystal structure of $[(N,N)Me_2]_3$ -TAPB.

Fig S13. A view of a 1-D layer of the crystal structure of $[(N,N)Me_2]_3$ -TAPB along the crystallographic direction *a* (H-bonds are shown by green dashed bonds).

Fig S14. Crystal structure of $[(N,N)Me_2]_3$ TAPB showing mutual C-H···N interactions between two molecules present in the adjacent layers (H-bonds are shown by green dashed bonds).

Table S3. Crystal data and structure refinement details for[(N,N)Me₂]₃TAPBand[(*N*,*N*)Me₂]₃TAPB-PA.

Compound(s)	[(N,N)Me ₂] ₃ TAPB	[(N,N)Me ₂] ₃ TAPB-PA
formula	C ₃₀ H ₃₃ N ₃	$C_{48}H_{42}N_{12}O_{21}$
formula wt	435.59	1122.94
temperature [K]	150(2)	150(2)
wavelength [Å]	0.71075	0.71075
crystal system	monoclinic	triclinic
space group	$P2_{I}/c$	<i>P</i> -1
a [Å]	13.508(9)	10.766(3)
b [Å]	24.193(16)	13.960(5)
c [Å]	7.507(5)	17.294(6)
α [deg]	90	102.357(5)
β [deg]	94.8640(10)	98.189(5)
γ [deg]	90	100.935(4)
volume (Å) ³	2444(3)	2447.0(14)
Ζ	4	2
density (calcd) [g/cm ³]	1.184	1.524
absorption coeff (mm ⁻¹)	0.069	0.122
F(000)	936	1164
crystal size [mm ³]	$0.02 \times 0.05 \times 0.25$	$0.02 \times 0.06 \times 0.14$
θ range [deg]	2.85 to 25.00	2.52-25.00
reflection collected	18213	18789
data (Rint)	4282(0.0722)	8546(0.0354)
completeness to θ [%]	99.7	99.1
restraints/parameters	36/329	0/730
GoF on F ²	1.303	1.087
R1 [$I > 2\sigma(I)$]/all data	0.1283/0.1581	0.0662/0.0852
wR2 [$I > 2\sigma(I)$]/all data	0.2274/0.2450	0.1486/0.1486
Largest peak and hole (e, Å-3)	0.297, -0.229	0.331, -0.264

Table S4. Geometrical parameters for hydrogen bonds (distances in Å and angles in deg) of $[(N,N)Me_2]_3TAPB$ and $[(N,N)Me_2]_3TAPB$ -PA.

Compound(s)	D-H··· A	d(D-H)	d(H···A)	d(D····A)	<(DHA)
[(<i>N</i> , <i>N</i>)Me ₂] ₃ TAPB	C(8)-H(8)····N(3)	0.95	2.66	3.524(5)	151
	C(29)-H(29A)···C(16)	0.98	2.89	3.777(3)	151
[(<i>N</i> , <i>N</i>)Me ₂] ₃ TAPB- PA	N(1)-H(1W)····O(8)	1.01	1.72	2.724(3)	171
	N(1)-H(1W)····O(9)	1.01	2.61	3.149(3)	113
	N(2)-H(2W)···O(15)	1.04	1.71	2.719(3)	161
	N(2)-H(2W)···O(21)	1.04	2.41	3.027(3)	117
	N(3)-H(3W)···O(1)	1.00	1.71	2.697(3)	167
	C(2)-H(2)····O(4)	0.95	2.49	3.428(4)	171
	C(11)-H(11)····O(19)	0.95	2.36	3.234(4)	152
	C(13)-H(13A)···O(9)	0.98	2.52	3.220(4)	128
	C(13)-H(13B)····O(13)	0.98	2.53	3.313(4)	137
	C(13)-H(13C)····O(8)	0.98	2.48	3.400(4)	156
	C(14)-H(14A)···O(20)	0.98	2.58	3.405(5)	149
	C(14)-H(14A)···O(9)	0.98	2.44	3.143(5)	128
	C(17)-H(17)····O(15)	0.95	2.26	3.026(4)	137
	C(21)-H(21A)···O(21)	0.98	2.44	3.070(4)	122
	C(22)-H(22B)····O(3)	0.98	2.37	3.129(4)	134
	C(25)-H(25)···O(10)	0.95	2.40	3.334(4)	166
	C(27)-H(27)···O(1)	0.95	2.51	3.219(4)	131
	C(29)-H(29A)···O(2)	0.98	2.51	3.413(4)	123
	C(30)-H(30A)····O(2)	0.98	2.34	3.020(4)	126
	C(30)-H(30B)····O(7)	0.98	2.43	3.311(4)	128
	$C(30)-H(30B)\cdots O(13)$	0.98	2.38	3.217(4)	144

Fig S15. Mechanism of electrostatic and H-bonds induced PET process in the fluorophore $[(N,N)Me_2]_3$ TAPB with PA.

Calculation of detection limit. To determine detection limit (DL), fluorescence titration of compound $[(N,N)Me_2]_3TAPB$ (1.0 μ M) with PA has been carried out. The successive fluorescence intensities have been plotted as a function of concentration of to obtain the correlation curve which shows linear ralationship with the [PA] in the range of 1.0 to 4.0 μ M. Standard deviation for blank solution (Sb1), slope of the curve (S) and signal to noise ratio (K) = 3 have been calculated from the curve and substituted in the following equation to calculate DL.

$$DL = K \times \frac{Sb1}{S}$$

Results of the analysis are as follows:

Sb1 = 278.090, S = 123.3428×10^{6} and DL = 6.76×10^{-6} M or 1.50 ppm.

Fig S16. Linear correlation curve for the calculation of DL (fluorescence intensity at 427 nm versus concentration).

References;

- G. He, H. Peng, T. Liu, M. Yang, Y. Zhang and Y. Fang, J. Mater. Chem., 2009, 19, 7347-7353.
- (2) D. Li, J. Liu, R. T. K. Kwok, Z. Liang, B. Z. Tang and J. Yu, *Chem. Commun.*, 2012, 48, 7167-7169.
- (3) M. Wang, V. Vajpayee, S. Shanmugaraju, Y.-R. Zheng, Z. Zhao, H. Kim, P. S. Mukherjee, K.-W. Chi and P. J. Stang, *Inorg. Chem.*, 2011, 50, 1506-1512.
- (4) P. Lu, J. W. Y. Lam, J. Liu, C. K. W. Jim, W. Yuan, N. Xie, Y. Zhong, Q. Hu, K. S. Wong, K. K. L. Cheukand B. Z. Tang, *Macromol. Rapid Commun.*, 2010, **31**, 834-839.
- (5) T. Liu, L. Ding, G. He, Y. Yang, W. Wang and Y. Fang, ACS Appl. Mater. Interfaces, 2011, 3, 1245-1253.
- (6) V. Bhalla, A. Guptaand M. Kumar, Org. Lett., 2012, 14, 3112-3115.
- N. Dey, S. K. Samantaand S. Bhattacharya, ACS Appl. Mater. Interfaces, 2013, 5, 8394-8400.
- (8) N. Venkatramaiah, S. Kumarand S. Patil, Chem. Commun., 2012, 48, 5007-5009.
- (9) H.-T. Feng and Y.-S. Zheng, *Chem. Eur. J.*, 2013, **20**, 195-201.
- (10) X. Wang, Y. Guo, D. Li and H. Chenand R.-c. Sun, Chem. Commun., 2012, 48, 5569-5571.
- (11) V. Vij, V. Bhalla, and M. Kumar, ACS Appl. Mater. Interfaces, 2013, 5, 5373-5380.
- (12) M. Dong, Y.-W. Wang, A.-J. Zhang and Y. Peng Chem. Asian J. 2013, 8, 1321-1330.
- (13) S. Dalapati, S. Jin, J. Gao, Y. Xu, A. Nagai and D. Jiang, J. Am. Chem. Soc. 2013, 135, 17310-17313.
- (14) V. Bhalla; S. Kaur, V. Vij and M. Kumar Inorg. Chem. 2013, 52, 4860-4865.
- (15) P. Vishnoi, M. G. Walawalkar, S. Sen, A. Datta, G. N. Patwari and R. Murugavel, *Phys. Chem. Chem. Phys.* 2014, 16, 10651-10658.