Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

α-cyanostilbene based Fluorophores: Aggregation Induced Enhanced Emission, Solvatochromism and pH effect

Veerabhadraiah Palakollu and Sriram Kanvah*

Department of Chemistry, Indian Institute of Technology Gandhinagar Ahmedabad 382424. India. E-mail:kanvah@gmail.com.

Supporting Information

Part 1. Absorption and emission spectra of stilbenes (1), (4), (5) and (6) in homogeneous solvents

Part 2. Emission studies in dioxane-water system for stilbenes (2), (3), (4), (5), (6); Intensity plot for stilbenes (4)-(6)

Part 3.pH dependent optical properties of stilbene (4) and its NMR interpretation

Part 4. NMR, Mass characterization of the synthesized molecules

Figure S1:Absorption and emission spectra of stilbene (1) in homogeneous solvents (excitation wavelength is 390 nm)

Figure S2:Absorption and emission spectra of stilbene (4) in homogeneous solvents (excitation wavelength is 380 nm)

Figure S3:Absorption and emission spectra of stilbene (5) in homogeneous solvents (excitation wavelength is 395 nm)

Figure S4: Absorption and emission spectra of stilbene (6) in homogeneous solvents (excitation wavelength is 365 nm)

Part 2. Emission studies in dioxane-water system for stilbenes (2), (3), (4), (5), (6); Intensity plot for stilbenes (4)-(6)

Figure S5: Fluorescence spectral changes of stilbene(2) with various proportions of dioxane and water (excitation wavelength is 395 nm)

Figure S6: Fluorescence spectral changes of stilbene (**3**) with various proportions of dioxane and water (excitation wavelength is 370 nm)

Figure S7: Fluorescence spectral changes of stilbene (4) with various proportions of dioxane and water (excitation wavelength is 390 nm)

Figure S8: Fluorescence spectral changes of stilbene (5) with various proportions of dioxane and water (excitation wavelength is 400 nm)

Figure S9: Fluorescence spectral changes of stilbene (6) with various proportions of dioxane and water (excitation wavelength is 365 nm)

Figure S10: A plot of I/I_o vs water fraction of stilbenes (4)-(6)

Table S1: Fluorescence quantum yields of stilbenes in dioxane and water

Molecule	Dioxane	Water	Molecule	Dioxane	Water
(1)	0.056	0.181	(4)	0.0089	0.124
(2)	0.125	0.154	(5)	0.0524	0.110
(3)	0.127	0.160	(6)	0.086	0.121

Figure S11: Colors of stilbenes (black background) in water and dioxane using hand-held UV lamp.(a), (b), (c) are in dioxane and (d), (e), (f) are in water for stilbenes (1), (2), (3) respectively. (The sample concentration is of the order 10^{-4} M).

Part 3.pH dependent optical properties of stilbene (4) and its NMR interpretation

Figure S12: Absorption spectra stilbene (4) recorded at various pH 1.26 and 7.18

Figure S13: Switching mechanism of stilbene (4) under various pH conditions and corresponding colors under UV lighting conditions. 1A- acidic species, 1-neutral species

Figure S14: Acid-base reversibility cycle by fluorescence intensity for stilbene (3)

Figure S15: Dye coated filter paper in acidic, neutral, basic and acidic (reversibility from basic medium) (from left to right)

Figure S16: ¹H NMR spectra under various pH conditions in DMSO(D₆)-D₂O. **1A**: acidic medium, **1**: neutral medium, **1B**: basic medium (solvent peaks were discarded for clarity).

Figure S17: Examination of acid-base reversibility for stilbene (1) by NMR spectroscopy. A): 1 in Acidic medium. B. To the NMR tube of 1 in acidic medium, a solution 1M NaOH is added and the resulting spectrum is shown. C: Expanded spectra of 1 in basic medium. B (&C) is identical to that obtained in the basic medium.

Figure S18: ¹H NMR spectra of stilbene (4) under acidic pH conditions in DMSO(d6). Comparison is provided with NMR obtained neutral (C) and in acidic (D) medium. (Solvent peaks were discarded for clarity)

Sample	pН	λ_a	λ_{f}	$\phi_{\rm f}$
		(nm)	(nm)	
(4)	1.26	328	391	0.061
	7.18	410	499	0.124
	13.02	409	498	0.121
(5)	1.26	403	548	0.109
	7.18	405	550	0.110
	13.02	405	551	0.110
(6)	1.26	376	500	0.122
	7.18	378	502	0.121
	13.02	377	502	0.121

 Table S2: pH dependent optical properties of stilbenes (4)-(6)

Part 4. NMR, Mass characterization of the synthesized molecules

¹H NMR Spectrumof 4-(cyanomethyl)phenyl acetate (8)

¹³C NMR Spectrum of 4-(cyanomethyl)phenyl acetate (8)

¹H NMR Spectrum of 4-(diphenylamino)benzaldehyde(10)

¹³C NMR Spectrum of 4-(diphenylamino)benzaldehyde(10)

¹H NMR Spectrum of 4-(9H-carbazol-9-yl)benzaldehyde (11)

¹³C NMR Spectrum of 4-(9H-carbazol-9-yl)benzaldehyde (11)

Mass spectrum of 4-(9H-carbazol-9-yl)benzaldehyde (11)

Exact mass: 271.099 Mass obtained in the positive mode: 272.0758 Elemental composition:C₁₉H₁₄NO

 Carbazole aldehyde
 Indian Institute of Technology, Gandhinagar0.0000000
 SYNAPT 52-5#NotSet 17-Feb-201423:03:34

 ITCM_MIX_010214_057:2383 (10.073) AM (Top.1, Ar,10000.0.0.00.000); Sm (SG, 1x1.00); Cm (2383-(1679:2119+2571:2762))
 1: TOF MS E5+ 7.45ed

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <td

¹H NMR Spectrum of (Z)-3-(4-(dimethylamino)phenyl)-2-(4hydroxyphenyl)acrylonitrile (1)

¹³C NMR Spectrum of (Z)-3-(4-(dimethylamino)phenyl)-2-(4hydroxyphenyl)acrylonitrile (1)

Mass spectrum of (Z)-3-(4-(dimethylamino)phenyl)-2-(4-hydroxyphenyl)acrylonitrile (1)

Exact mass 264.13

Mass obtained in positive mode 265.1266 (M+1)

Elemental Composition $C_{17}H_{16}N_2O$ (Obtained in the positive mode)

¹H NMR Spectrum of (Z)-3-(4-(dimethylamino)phenyl)-2-(4hydroxyphenyl)acrylonitrile (1) in neutral medium

¹H NMR Spectrum of (Z)-3-(4-(dimethylamino)phenyl)-2-(4hydroxyphenyl)acrylonitrile (1) in basic medium

¹H NMR Spectrum of stilbene (Z)-3-(4-(diphenylamino)phenyl)-2-(4-

hydroxyphenyl)acrylonitrile (2)

nnmeph, cn, stil, oh

¹³C NMR Spectrum of stilbene (Z)-3-(4-(diphenylamino)phenyl)-2-(4hydroxyphenyl)acrylonitrile (2)

Mass spectrum of stilbene (Z)-3-(4-(diphenylamino)phenyl)-2-(4hydroxyphenyl)acrylonitrile (2)

Exact mass 388.16

Mass obtained in positive mode 389.1853 (M+1)

Elemental Composition $C_{27}H_{21}N_2O$ (Obtained in the positive mode)

¹³C NMR Spectrum of stilbene (3)

Mass spectrum of stilbene (3)

Exact mass 386.14

Mass obtained in positive mode 387.1707 (M+1)

Elemental Composition $C_{27}H_{19}N_2O$ (Obtained in the positive mode)

¹HNMR Spectrum of stilbene (4)

¹³C NMR Spectrum of stilbene (4)

¹HNMR Spectrum of stilbene (4) in acidic medium

¹³C NMR Spectrum of stilbene (4) in acidic medium

¹HNMR Spectrum of stilbene (5)

30

¹³C NMR Spectrum of stilbene (5)

¹HNMR Spectrum of stilbene (6)

¹³CNMR Spectrum of stilbene (6)

