Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Electronic Supplementary Information (ESI)

Facile synthesis of mesoporous cobalt oxide rugby for electrochemical energy storage

Yuting Hao, Huanwen Wang, Zhonghua Hu, Lihua Gan, Zijie Xu*

Department of Chemistry, Tongji University, Shanghai 200092, China

Experimental Details

Synthesis of Samples

The Co_3O_4 rugby balls were synthesized as follows: 3 g urea, 1.5 g $Co(CH_3COO)_2 \cdot 4H_2O$, and 3 g PVP (Mw=30000) were dissolved into 120 mL ethylene glycol with continuous agitation, and then transferred to the Teflonsealed autoclave and maintained at 200 °C for 16 h. The as-synthesized product was isolated by centrifugation, washed three times with water and ethanol, respectively, and finally dried in a vacuum oven at 60 °C for 24 h. After then, the thermal treatment of the precursor was carried out in air at 300 °C for 4 h.

Graphene hydrogels were prepared according to a previous reference ¹. In a typical procedure, a 60 mL graphite oxide (2 mg mL⁻¹) aqueous dispersion was obtained by sonication for 1 h². Then the resulting mixture was sealed in a Teflon lined autoclave and was hydrothermally treated at 180 °C for 12 h. Finally, the asprepared sample was freeze-dried overnight, followed by vacuum drying at 60 °C for several hours.

Characterization

The products were characterized by field emission scanning electron microscopy (FESEM; Philips XSEM30, Holland), transmission electron microscope (TEM; JEOL, JEM-2010, Japan), X-ray diffraction (XRD; Philips PC-APD) with Cu K α radiation (λ =1.5418 Å), Raman spectra (514 nm laser with RM100) and N₂ adsorption/ desorption.

The as-prepared samples, acetylene black and polytetrafluoroethylene (PTFE) binder were mixed in a weight ratio of 75:20:5, using ethanol as the solvent to be pressed into nickel foam (1 cm × 1 cm), which were used as working electrodes. A typical experimental cell equipped with a working electrode, a platinum foil counter electrode, and an SCE reference electrode was used for measuring the electrochemical properties. The Co₃O₄ rugby balls and the graphene hydrogels working electrodes were pressed together with a polypropylene membrane as separator to prepare the asymmetric supercapacitor. The loading mass ratio of the Co₃O₄ and graphene hydrogels was estimated to be 1. The electrolyte was 1 M KOH. The specific capacitance is calculated by $C_m=I\times\Delta t/(\Delta V\times m)$, where C_m (F g⁻¹) is the specific capacitance, I (A) is the discharge current, Δt (s) is the discharge time, ΔV (V) is the potential change during discharge, and m (g) is the mass of the active material within the electrode.

1 L. Zhang and G. Shi, J. Phys. Chem. C 2011, 115, 17206.

2 W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.