Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Journal Name

RSCPublishing

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

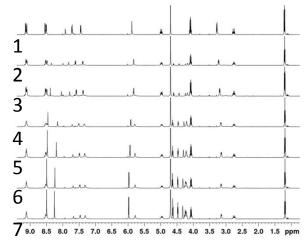
Viologen phosphorus dendritic molecule as carrier of ATP and Mant-ATP. Spectrofluorimetric and NMR studies.

Received 00th January 2012, Accepted 00th January 2012 Aleksandra Szulc^{*a**}, Maria Zablocka^{*b**}, Yannick Coppel^{*c*}, Christian Bijani^{*c*}, Wojciech Dabkowski^{*b*}, Maria Bryszewska^{*a*}, Barbara Klajnert-Maculewicz^{*a*}, Jean-Pierre Majoral^{*c**}‡

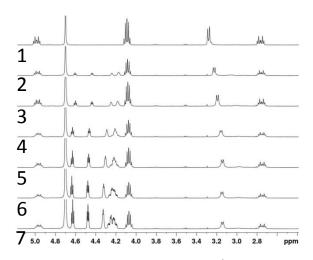
DOI: 10.1039/x0xx00000x

www.rsc.org/

^{*a*} Department of General Biophysics, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland..


^{*b*} Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland. ^{*c*} Laboratoire de Chimie de Coordination du CNRS (LCC), 205 route de Narbonne, F-31077 Toulouse cedex 4, France.

majoral@lcc-toulouse.fr


* Authors contributed equally

‡ Corresponding author

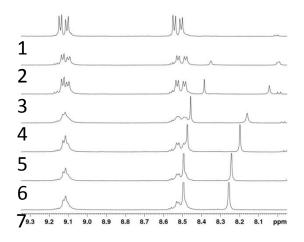

Electronic Supplementary Information (ESI) available: DOI: 10.1039/b000000x/

Figure S1. Full ¹H NMR titration spectra of the dendrimer when mixed with ATP. The concentration of the dendrimer was kept constant at 1.2 mmol/L. The molar ratio of ATP – dendrimer ranges from 0 to 10 (1-7).

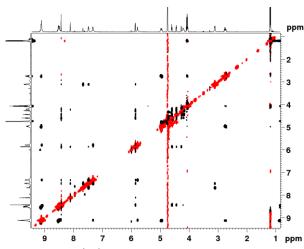

Figure S2. Expanded aliphatic region of the ¹H NMR titration spectra of the dendrimer when mixed with ATP. The concentration of the dendrimer was kept constant at 1.2 mmol/L. The molar ratio of ATP – dendrimer ranges from 0 to 10 (1-7)

Figure S3. ¹H NMR titration spectra of the viologen dendrimer part when mixed with ATP. The concentration of the dendrimer was kept constant at 1.2 mmol/L. The molar ratio of ATP – dendrimer ranges from 0 to 10 (1-7).

Table S1. Comparison of the maximum chemical shift difference (ppm), $\delta_{initial} - \delta_{final}$ of the dendrimer ¹H resonances on titration with ATP.

Hydroge n position	H1	H2	Н3	H4	Н5	H6	H7	H8	Н9	H1 0	H1 1
Chemica l shift differen ce	- 0.1 4	- 0.2 5	- 0.2 5	- 0.1 4	- 0.0 9	- 0.0 1	0.0 2	- 0.0 3	- 0.0 1	- 0.0 2	- 0.0 2

Figure S4. Full ¹H-¹H ROESY spectrum of the 1/4 dendrimer – ATP mixture.

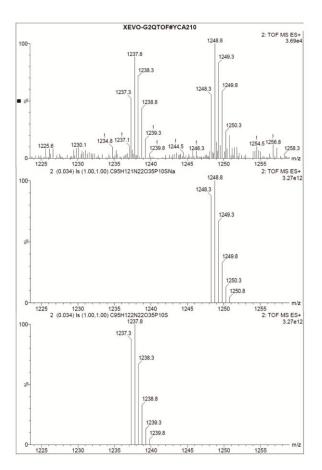


Figure S5. Mass Spectrometry of the ATP – dendrimer complex showing the formation of a 2/1 complex. Spectra were recorded on a Xevo-G2QTOF (Waters) on ESI(+), Flow Injection Analysis (0.15 mL/min) in 100% MeOH (from 100 to 3000 m/z).