Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

$MnFe_2O_4@NH_2@2AB-Ni:$ A novel, highly active, stable and magnetically recoverable nanocatalyst and use of this heterogeneous catalyst in green synthesis of spirooxindoles in water

H. Naeimi,^a Z. Rashid,^a A.-H. Zarnani,^b and R. Ghahremanzadeh^{*c}

^aDepartment of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317, I.R. Iran.

^bReproductive Immunology Research Center, Avicenna Research Institute, (ACECR), Tehran, Iran.

^cNanobiotechnology Research Center, Avicenna Research Institute, (ACECR), Tehran, Iran.

E-mail: r.ghahremanzadeh@avicenna.ac.ir

SUPPORTING INFORMATION

Page	List of contents	Page
1	¹³ C NMR of 8a	23
2-9	¹ H NMR of 8b	24
10	¹³ C NMR of 8b	25
11	¹ H NMR of 8c	26
12	¹³ C NMR of 8c	27
13	¹ H NMR of 8d	28
14	¹³ C NMR of 8d	29
15	¹ H NMR of 8e	30
16	¹³ C NMR of 8e	31
17	¹ H NMR of 8f	32
18	¹³ C NMR of 8 f	33
19	¹ H NMR of 8g	34
20	¹³ C NMR of 8g	35
21	¹ H NMR of 8h	36
22	¹³ C NMR of 8h	37
	Page 1 2-9 10 11 12 13 14 15 16 17 18 19 20 21 22	Page List of contents 1 ¹³ C NMR of 8a 2-9 ¹ H NMR of 8b 10 ¹³ C NMR of 8b 11 ¹ H NMR of 8c 12 ¹³ C NMR of 8c 13 ¹ H NMR of 8c 14 ¹³ C NMR of 8d 15 ¹ H NMR of 8e 16 ¹³ C NMR of 8e 17 ¹ H NMR of 8f 18 ¹³ C NMR of 8f 19 ¹ H NMR of 8g 20 ¹³ C NMR of 8g 21 ¹ H NMR of 8h

Experimental Part

General. The chemicals used in this work were obtained from Fluka and Merck and were used without purification. Melting points were measured on an Electrothermal 9200 apparatus. IR spectra were recorded as KBr pellets on a Perkin-Elmer 781 spectrophotometer and an Impact 400 Nicolet FT-IR spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a BRUKER DRX-300 AVANCE spectrometer at 300.13 and 75.47 MHz. ¹H and ¹³C NMR spectra were obtained on solutions in DMSO- d_6 using tetramethylsilane as internal reference. X-ray diffraction (XRD) pattern of the as-synthesized material was obtained using a Holland Philips Xpert X-ray powder diffraction (XRD) diffractometer (CuK, radiation, λ = 0.154056 nm), at a scanning speed of 2°/min from 10° to 100° (20). The nanocatalyst was determined using a KYKY EM-3200 Scanning Electron Microscope (SEM) operated at a 26 kV accelerating voltage. Thermogravimetric/differential thermal analyses (TG/DTA) was performed on a Thermal Analyzer with a heating rate of 20 °C min⁻¹ over a temperature range of 25-800 °C under flowing compressed N₂. The content of nickel in the heterogenized catalyst was determined by VISTA-PRO, CCD simultaneous ICP analyser. The purity determination of the substrates and reaction monitoring were accomplished by TLC on silica-gel polygram SILG/UV 254 plates (from Merck Company).

Typical procedure for the preparation of spirooxindoles 4(a-f) and 8(a-h).

A mixture of isatin 1 (1 mmol), cyclohexane-1,3-dione 2 (1 mmol), 2,6diaminopyrimidin-4(3*H*)-one 3 or barbituric acid 7 (1 mmol), catalyst (10 mg) and water (5 mL) was added in a round-bottomed flask and stirred at 90 °C. After completion of the reaction (monitored by TLC) the catalyst was easily separated from the reaction mixture with an external magnet. After separation of catalyst, the reaction mixture was filtered and the precipitate washed with water and recrystallized by EtOH to afford the pure product.

2'-Amino-1-methyl-8',9'-dihydro-3'*H*-spiro[indoline-3,5'-pyrimido[4,5*b*]quinoline]-2,4',6'(7'*H*,10'*H*)-trione (4a).

Cream powder (79%); mp >300 °C dec. IR (KBr) (v_{max} / cm⁻¹): 3438, 3288, 2933, 1677, 1652. ¹H NMR (300 MHz, DMSO-*d*₆): δ_H (ppm) 1.79 (2H, brs, CH₂), 2.03 (2H, brs, CH₂), 2.52 (2H, brs, CH₂), 3.04 (3H, s, NCH₃), 6.40 (2H, s, NH₂), 6.75-7.07 (4H, m, H-Ar), 9.55 (1H, s, NH), 10.12 (1H, s, NH). ¹³C NMR (75 MHz, DMSO-*d*₆): δ_C (ppm) 21.2, 26.6, 27.3, 37.5, 48.4, 91.8, 106.8, 110.5, 121.4, 122.7, 127.3, 136.6, 145.1, 153.8, 154.4, 154.6, 160.4, 179.5, 193.4.

2'-Amino-1-methyl-5-nitro-8',9'-dihydro-3'*H*-spiro[indoline-3,5'-pyrimido[4,5-*b*] quinoline]-2,4',6'(7'*H*,10'*H*)-trione (4b).

Cream powder (80%); mp >300 °C dec. IR (KBr) (v_{max} / cm⁻¹): 3299, 3167, 2944, 1688, 1669. ¹H NMR (300 MHz, DMSO-*d*₆): δ_H (ppm) 1.81-1.82 (2H, m, CH₂), 2.07-2.11 (2H, m, CH₂), 2.55-2.59 (2H, m, CH₂), 3.16 (3H, s, NCH₃), 6.53 (2H, s, NH₂), 7.02-8.17 (3H, m, H-Ar), 9.80 (1H, s, NH), 10.28 (1H, s, NH). ¹³C NMR (75 MHz, DMSO-*d*₆): δ_C (ppm) 21.0, 26.9, 27.2, 37.2, 48.5, 90.8, 106.8, 109.4, 117.8, 125.2, 137.5, 142.3, 151.4, 154.1, 154.9, 155.7, 160.6, 180.3, 193.9.

2'-Amino-8',8'-dimethyl-8',9'-dihydro-3'*H*-spiro[indoline-3,5'-pyrimido[4,5*b*]quinoline] -2,4',6'(7'*H*,10'*H*)-trione (4c).

Cream powder (96%); mp >300 °C dec. IR (KBr) (v_{max} / cm⁻¹): 3334, 3189, 2938, 1697, 1655. ¹H NMR (300 MHz, DMSO-*d*₆): δ_H (ppm) 0.90 (3H, s, CH₃), 0.98 (3H, s, CH₃), 1.82-2.08 (2H, m, CH₂), 2.32-2.50 (2H, m, CH₂), 6.35 (2H, s, NH₂), 6.57-6.99 (4H, m, H-Ar), 9.45 (1H, s, NH), 9.92 (1H, s, NH), 10.24 (1H, s, NH). ¹³C NMR (75 MHz, DMSO-*d*₆): δ_C (ppm) 26.9, 28.9, 32.3, 48.8, 51.0, 92.1, 108.1, 109.3, 120.6, 122.8, 127.0, 137.3, 143.6, 152.2, 153.9, 154.5, 160.5, 180.7, 193.1.

2'-Amino-5-bromo-8',8'-dimethyl-8',9'-dihydro-3'*H*-spiro[indoline-3,5'pyrimido[4,5-*b*] quinoline]-2,4',6'(7'*H*,10'*H*)-trione (4d).

Cream powder (94%); mp >300 °C dec. IR (KBr) (v_{max} / cm⁻¹): 3416, 3164, 2959, 1701, 1645. ¹H NMR (300 MHz, DMSO-*d*₆): δ_H (ppm) 0.91 (3H, s, CH₃), 0.97 (3H, s, CH₃), 1.88-2.06 (2H, m, CH₂), 2.41 (2H, brs, CH₂), 6.42 (2H, s, NCH₂), 6.54-7.15 (3H, m, H-Ar), 9.55 (1H, s, NH), 10.12 (1H, s, NH), 10.31 (1H, s, NH). ¹³C NMR (75 MHz, DMSO-*d*₆): δ_C (ppm) 27.3, 28.5, 32.3, 49.2, 50.9, 91.5, 108.7, 110.0, 112.2, 125.4, 129.7, 139.8, 143.2, 152.8, 154.0, 154.7, 160.5, 180.3, 193.3.

2'-Amino-8',8'-dimethyl-5-nitro-8',9'-dihydro-3'*H*-spiro[indoline-3,5'pyrimido[4,5-*b*] quinoline]-2,4',6'(7'*H*,10'*H*)-trione (4e).

Cream powder (93%); mp >300 °C dec. IR (KBr) (v_{max} / cm⁻¹): 3427, 3185, 2923, 1720, 1662. ¹H NMR (300 MHz, DMSO-*d*₆): δ_H (ppm) 0.92 (3H, s, CH₃), 0.97 (3H, s, CH₃), 1.90-2.06 (2H, m, CH₂), 2.47 (2H, brs, CH₂), 6.49 (2H, s, NH₂), 6.80-8.03 (3H, m, H-Ar), 9.70 (1H, s, NH), 10.38 (1H, s, NH), 10.79 (1H, s, NH). ¹³C NMR (75 MHz, DMSO-*d*₆): δ_C (ppm) 27.4, 28.3, 32.4, 49.0, 50.7, 91.0, 108.0, 108.3, 117.8, 125.1, 138.3, 141.7, 150.6, 153.5, 154.2, 154.8, 160.7, 181.4, 193.6.

2'-Amino-1,8',8'-trimethyl-8',9'-dihydro-3'*H*-spiro[indoline-3,5'-pyrimido[4,5-*b*] quinoline]-2,4',6'(7'*H*,10'*H*)-trione (4f).

Cream powder (92%); mp >300 °C dec. IR (KBr) (v_{max} / cm⁻¹): 3330, 3176, 2940, 1691, 1652. ¹H NMR (300 MHz, DMSO- d_6): δ_H (ppm) 0.89 (3H, s, CH₃), 0.97 (3H, s, CH₃), 1.81-2.05 (2H, m, CH₂), 2.34-2.49 (2H, m, CH₂), 3.05 (3H, s, NCH₃), 6.40 (2H, s, NH₂), 6.86-7.07 (4H, m, H-Ar), 9.51 (1H, s, NH), 10.13 (1H, s, NH). ¹³C NMR (75 MHz, DMSO- d_6): δ_C (ppm) 26.6, 27.0, 28.9, 32.3, 48.3, 50.9, 91.8, 106.8, 109.1, 121.4, 122.5, 127.3, 136.4, 145.1, 152.4, 153.9, 154.6, 160.4, 179.4, 193.1.

5'-Nitro-8,9-dihydrospiro[chromeno[2,3-*d*]pyrimidine-5,3'-indoline]-2,2',4,6 (1*H*,3*H*,7*H*)-tetraone (8a)

Colorless crystals (92%); mp 278-280 °C dec. IR (KBr) (v_{max} /cm⁻¹): 3224, 1734, 1687, 1622. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta_{\rm H}$ (ppm) 1.92 (2H, brs, CH₂), 2.25 (2H, brs, CH₂), 2.72 (2H, brs, CH₂), 6.91 (1H, d, ³*J*_{HH} = 8.4 Hz, H-Ar), 8.05 (1H, s, H-Ar), 8.09 (1H, d, ³*J*_{HH} = 8.4 Hz, H-Ar), 11.11 (1H, s, NH), 11.16 (1H, s, NH), 12.31 (1H, brs, NH).¹³C NMR (75 MHz, DMSO-*d*₆): $\delta_{\rm C}$ (ppm) 20.0, 27.3, 37.0, 45.6, 88.6, 108.8, 113.6, 119.6, 126.1, 135.0, 142.3, 149.4, 150.9, 153.8, 162.2, 166.7, 179.0, 196.0.

5'-Nitro-2-thioxo-2,3,8,9-tetrahydrospiro[chromeno[2,3-*d*]pyrimidine-5,3'indoline]-2',4,6(1*H*,7*H*)-trione (8b)

Colorless crystals (88%); mp >300 °C. IR (KBr) (v_{max} /cm⁻¹): 3363, 3060, 1717, 1683, 1622. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta_{\rm H}$ (ppm) 1.69-1.75 (2H, brs, CH₂), 2.25 (2H, brs, CH₂), 2.72 (2H, brs, CH₂), 6.91 (1H, d, ³*J*_{HH} = 6.0 Hz, H-Ar), 8.08-8.09 (2H, m, H-Ar), 11.20 (1H, s, NH), 12.48 (1H, s, NH), 13.75 (1H, brs, NH). ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta_{\rm C}$ (ppm) 19.9, 27.3, 37.0, 45.6, 93.2, 108.8, 113.4, 119.9, 126.2, 134.4, 142.4, 150.9, 153.2, 159.8, 166.6, 174.1, 175.5, 195.9.

8,8-Dimethyl-8,9-dihydrospiro[chromeno[2,3-*d*]pyrimidine-5,3'-indoline]-2,2',4,6(1*H*,3*H*,7*H*)-tetraone (8c)

White powder (96%); mp >300 °C. IR (KBr) (v_{max} /cm⁻¹): 3337, 3265, 1746, 1664, 1620. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta_{\rm H}$ (ppm) 0.97 (3H, s, CH₃), 1.03 (3H, s, CH₃), 2.07, 2.10 (2H, AB_q, ³*J*_{AB} = 15.9 Hz, CH₂), 2.55, 2.66 (2H, AB_q, ³*J*_{AB} = 17.6 Hz, CH₂), 6.71 (1H, d, ³*J*_{HH} = 7.8 Hz H-Ar), 6.78 (1H, t, ³*J*_{HH} = 7.5 Hz H-Ar), 6.97 (1H, d, ³*J*_{HH} = 7.5 Hz, H-Ar), 6.08 (1H, t, ³*J*_{HH} = 7.5 Hz, H-Ar), 10.36(1H, s, NH), 11.01(1H, s, NH), 12.19(1H, brs, NH). ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta_{\rm C}$ (ppm) 27.1, 28.2, 32.2, 45.5, 50.8, 89.6, 109.0, 113.6, 121.3, 123.3, 128.3, 134.0, 144.3, 149.4, 153.5, 161.9, 163.6, 178.2, 195.3.

5'-Bromo-8,8-dimethyl-8,9-dihydrospiro[chromeno[2,3-*d*]pyrimidine-5,3'indoline]-2,2',4,6(1*H*,3*H*,7*H*)-tetraone (8d)

Colorless crystals (94%); mp >300 °C. IR (KBr) (v_{max} /cm⁻¹): 3162, 3121, 3049, 1739, 1724, 16581, 1617. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta_{\rm H}$ (ppm) 0.99 (3H, s, CH₃), 1.02 (3H, s, CH₃), 2.09-2.21 (2H, m, CH₂), 2.60 (2H, brs, CH₂), 6.67 (1H, d, ³*J*_{HH} = 8.7 Hz, H-Ar), 7.23-7.25 (2H, m, H-Ar), 10.52 (1H, s, NH), 11.05 (1H, s, NH), 12.23 (1H, brs, NH). ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta_{\rm C}$ (ppm) 27.5, 27.8, 32.2, 45.7, 50.8, 89.0, 110.7, 112.9, 113.0, 126.3, 130.9, 136.4, 143.7, 149.5, 153.7, 162.0, 164.0, 177.9, 195.6.

8,8-Dimethyl-5'-nitro-8,9-dihydrospiro[chromeno[2,3-*d*]pyrimidine-5,3'indoline]-2,2',4,6(1*H*,3*H*,7*H*)-tetraone (8e)

Colorless crystals (96%); mp 290-292 °C dec. IR (KBr) (v_{max} /cm⁻¹): 3041, 2957, 1730, 1691, 1632. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta_{\rm H}$ (ppm) 0.99 (3H, s, CH₃), 1.02 (3H, s, CH₃), 2.167 (2H, brs, CH₂), 2.64 (2H, brs, CH₂), 6.91 (1H, d, ³*J*_{HH} = 8.5 Hz, H-Ar), 8.04 (1H, s, H-Ar), 8.04-8.11 (1H, m, H-Ar), 11.10 (1H, s, NH), 11.16(1H, s, NH), 12.31(1H, brs, NH). ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta_{\rm C}$ (ppm) 27.6, 27.7, 32.3, 45.6, 50.6, 88.5, 108.8, 112.6, 119.3, 126.1, 135.0, 142.3, 149.4, 151.0, 154.0, 162.2, 164.7, 178.9, 195.9.

5',8,8-Trimethyl-8,9-dihydrospiro[chromeno[2,3-*d*]pyrimidine-5,3'-indoline]-2,2',4,6 (1*H*,3*H*,7*H*)-tetraone (8f)

Colorless crystals (95%); mp 290-292 °C dec. IR (KBr) (v_{max} /cm⁻¹): 3368, 3178, 2962, 1724, 1680, 1622. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta_{\rm H}$ (ppm) 0.98 (3H, s, CH₃), 1.02 (3H, s, CH₃), 2.06-2.21 (2H, m, CH₂), 2.59-2.61 (2H, m, CH₂), 3.66 (3H, s, CH₃), 6.59 (1H, d, ³*J*_{HH} = 7.8 Hz, H-Ar), 7.81 (1H, s, H-Ar), 7.87 (1H, d, ³*J*_{HH} = 7.8 Hz, H-Ar), 10.26 (1H, s, NH), 11.01 (1H, s, NH), 12.19 (1H, s, NH) . ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta_{\rm C}$ (ppm) 19.0, 21.1, 27.3, 28.0, 32.0, 45.5, 49.9, 89.7, 108.7, 113.6, 124.0, 128.5, 130.0, 134.1, 141.8, 149.5, 153.4, 161.9, 163.5, 178.1, 195.3.

5'-Bromo-8,8-dimethyl-2-thioxo-2,3,8,9-tetrahydrospiro[chromeno[2,3*d*]pyrimidine-5,3'-indoline]-2',4,6(1*H*,7*H*)-trione (8g)

Colorless crystals (90%); mp 280-282 °C. IR (KBr) (v_{max} /cm⁻¹): 3060, 2967, 1711, 1708. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta_{\rm H}$ (ppm) 0.99 (3H, s, CH₃), 1.02 (3H, s, CH₃), 2.16 (2H, brs, CH₂), 2.60 (2H, brs , CH₂), 6.67 (1H, d, ³*J*_{HH} = 8.1 Hz, H-Ar), 7.25 (1H, d, ³*J*_{HH} = 7.2 Hz, H-Ar), 7.33 (1H, s, H-Ar), 10.58 (1H, s, NH), 12.45 (1H, s, NH), 13.68 (1H, brs, NH). ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta_{\rm C}$ (ppm) 27.5, 27.8, 32.3, 45.7, 50.7, 93.7, 110.8, 112.9, 113.0, 126.6, 131.1, 135.8, 143.7, 153.1, 159.7, 164.0, 174.1, 177.4, 195.5.

8,8-Dimethyl-5'-nitro-2-thioxo-2,3,8,9-tetrahydrospiro[chromeno[2,3*d*]pyrimidine-5,3'-indoline]-2',4,6(1*H*,7*H*)-trione (8h)

Colorless crystals (92%); mp >300 °C. IR (KBr) (v_{max} /cm⁻¹): 3383, 3337, 2962, 1730, 1684, 1627. ¹H NMR (300 MHz, DMSO- d_6): $\delta_{\rm H}$ (ppm) 1.00-1.07 (6H, m, 2CH₃), 2.17 (2H, brs, CH₂), 2.63 (2H, brs, CH₂), 6.93 (1H, d, ² $J_{\rm AB}$ = 8.1 Hz, H-Ar), 8.09-8.14 (2H, m, H-Ar), 11.21 (1H, s, NH), 12.48 (1H, s, NH), 13.76 (1H, brs, NH) . ¹³C NMR (75 MHz, DMSO- d_6): $\delta_{\rm C}$ (ppm) 19.0, 27.6, 32.3, 45.5, 50.5, 56.5, 93.2, 108.9, 112.4, 119.7, 126.2, 134.4, 142.4, 150.9, 153.4, 160.0, 164.7, 174.2, 195.8.

 1 H NMR of **4a**

¹³C NMR of **4a**

¹H NMR of **4b**

¹³C NMR of **4b**

 1 H NMR of **4d**

 13 C NMR of **4d**

¹H NMR of **4e**

¹³C NMR of **4e**

¹H NMR of 8a

¹³C NMR of 8a

¹H NMR of **8b**

¹³C NMR of **8b**

¹H NMR of 8c

¹³C NMR of **8c**

 1 H NMR of **8d**

¹³C NMR of **8d**

¹³C NMR of **8e**

¹H NMR of **8f**

¹³C NMR of **8g**

