Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

New Journal of Chemistry

Encapsulation of monoamine neurotransmitters and trace amines by amphiphilic anionic calix[5]arene micelles

Giuseppe Gattuso,^a Anna Notti,*^a Sebastiano Pappalardo,^b Melchiorre F. Parisi,*^a Ilenia Pisagatti^a and Salvatore Patanè^c

^aDipartimento di Scienze Chimiche, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy ^bDipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy ^cDipartimento di Fisica e di Scienze della Terra, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy

Electronic Supplementary Information

nage	Contents		
S2	Table S1. Diffusion coefficients of calixarene 1 at different concentrations.		
S3	Table S2. ¹ H NMR data of guests 2–7 prior and after binding to 1.		
S4	Figure S1. Plot of the diffusion coefficients of the calixarene-Pea·HCl surfactant vs $1/[1] = [2]$.		
S5	Figure S2. ¹ H NMR spectra of: (a) $[1] = 10$ mM, (b) $[1] = [2] = 10$ mM and (c) $[2] = 10$ mM. (d) The 2D		
	NOESY spectrum of $[1] = [2] = 10 \text{ mM}$		
S6	Figure S3. ¹ H NMR spectra of: (a) $[1] = 10$ mM, (b) $[1] = [3] = 10$ mM and (c) $[3] = 10$ mM. (d) The 2D		
	NOESY spectrum of $[1] = [3] = 10 \text{ mM}.$		
S7	Figure S4. ¹ H NMR spectra of: (a) $[1] = 10 \text{ mM}$, (b) $[1] = [4] = 10 \text{ mM}$ and (c) $[4] = 10 \text{ mM}$. (d) The 2D		
	NOESY spectrum of $[1] = [4] = 10 \text{ mM}.$		
S 8	Figure S5. ¹ H NMR spectra of: (a) $[1] = 10$ mM, (b) $[1] = [5] = 10$ mM and (c) $[5] = 10$ mM. (d) The 2D		
	NOESY spectrum (500 MHz, 298 K, D_2O) of [1] = [5] = 10 mM.		
S9	Figure S6. ¹ H NMR spectra of: (a) $[1] = 10 \text{ mM}$, (b) $[1] = [6] = 10 \text{ mM}$ and (c) $[6] = 10 \text{ mM}$. (d) The 2D		
	NOESY spectrum of $[1] = [6] = 10 \text{ mM}.$		
S10	Figure S7 . ¹ H NMR spectra of: (a) $[1] = 10$ mM, (b) $[1] = [7] = 10$ mM and (c) $[7] = 10$ mM. (d) The 2D		
	NOESY spectrum of $[1] = [7] = 10 \text{ mM}.$		

Table S1. Diffusion coefficients ($D_{1\text{free}}$), hydrodynamic radii (R_h) and aggregation numbers (N) of the species present at 298 K in D₂O solutions of calixarene **1** at different concentrations. Data were calculated from DOSY experiments, using the SCH₂ resonance ($\delta = 2.87$ ppm) as the probe signal.

<i>C</i> (mM)	$D_{1 \text{free}} \times 10^{-10} (\text{m}^2/\text{s})$	$R_{\rm h}({\rm \AA})$	Ν
10	0.82 ± 0.03	24.4 ± 0.9	14.3
7.5	0.82 ± 0.05	24.4 ± 1.4	14.3
5	0.94 ± 0.08	21.2 ± 1.6	9.5
2	1.17 ± 0.10	17.0 ± 1.3	4.9
1	1.62 ± 0.10	12.3 ± 0.7	1.8
0.8	1.78 ± 0.08	11.2 ± 0.5	1.4
0.64	1.89 ± 0.05	10.5 ± 0.2	1.2
0.5	1.94 ± 0.07	10.3 ± 0.4	1.1
0.4	1.98 ± 0.07	10.1 ± 0.4	1
0.3	2.04 ± 0.10	9.8 ± 0.5	0.9
0.2	1.99 ± 0.08	10.0 ± 0.5	1

Proton	δ (ppm)	$\delta_{ ext{bound}}$ (ppm)	$cis (\Delta \delta, ppm)$
Pea·HCl (2)			
α -CH ₂	3.16	3.01	0.15
2		(-0.62)	(3.78)
β -CH ₂	2.88	2.74	0.14
-		(-0.81)	(3.69)
ArH(2,6)	7.21	6.91	0.30
		(4.75)	(2.46)
ArH(4)	7.23	6.76	0.47
		(6.54)	(0.69)
ArH(3,5)	7.30	7.02	0.28
		(6.29)	(1.01)
Tvrm·HCl (3)			
α-CH ₂	3.10	2.94	0.16
β -CH ₂	2.79	2.57	0.22
ArH(3.5)	7.08	6.86	0.22
ArH(2.6)	6.77	6.61	0.16
Dopa·HCl (4)			
α -CH ₂	3.10	2.94	0.16
β -CH ₂	2.75	2.51	0.24
ArH(6)	6.78	6.62	0.16
ArH(3)	6.71	6.61	0.10
ArH(5)	6.63	6.38	0.25
Sert·HCl (5)			
α-CH ₂	3.18	3.03	0.15
β -CH ₂	2.98	2.76	0.22
ArH(7)	7.29	6.96	0.33
ArH(2)	7.15	6.95	0.20
ArH(4)	6.96	6.83	0.13
ArH(6)	6.74	6.54	0.20
Hist·2HCl (6)			
α -CH ₂	3.22	3.14	0.08
β -CH ₂	3.03	2.88	0.15
ArH(2)	8.51	8.37	0.19
ArH(4)	7.26	7.14	0.12
Nore $HC1(7)$			
$CH_{\rm N}$	3 10	2 94	0.16
	4 75	2.9 1 4.65	0.10
ArH(6)	- .,5 6.82	05 6 67	0.15
ArH(3)	6.83	6 77	0.06
ArH(5)	6 74	6 58	0.16
ArH(3) ArH(5)	6.83 6.74	6.77 6.58	0.06 0.16

Table S2. Chemical shifts (ppm) of neurotransmitters 2–7 (10 mM) prior and after binding to calixarene 1 (10 mM) and relative complexation induced shifts (cis). ¹H NMR spectra were recorded in D_2O (500 MHz, 298 K).^{*a*}

^{*a*} Values in parenthesis refer to the chemical shifts of the *endo*-cavity included phenethylammonium ions (Pea \cdot H⁺ \subset 1).

Figure S1. Plot of the diffusion coefficients (D_{obs}) of the calixarene-Pea·HCl surfactant vs 1/[1] = [2]. Data were calculated using the isochronous ArCH₂Ar resonances (δ 4.35 ppm) of the monomers and the aggregated species.

Figure S2. ¹H NMR spectra (500 MHz, 298 K, D₂O) of: (a) [1] = 10 mM, (b) [1] = [2] = 10 mM and (c) [2] = 10 mM. (d) The 2D NOESY spectrum (500 MHz, 298 K, D₂O) of [1] = [2] = 10 mM.

Figure S3. ¹H NMR spectra (500 MHz, 298 K, D₂O) of: (a) [1] = 10 mM, (b) [1] = [3] = 10 mM and (c) [3] = 10 mM. (d) The 2D NOESY spectrum (500 MHz, 298 K, D₂O) of [1] = [3] = 10 mM.

Figure S4. ¹H NMR spectra (500 MHz, 298 K, D₂O) of: (a) [1] = 10 mM, (b) [1] = [4] = 10 mM and (c) [4] = 10 mM. (d) The 2D NOESY spectrum (500 MHz, 298 K, D₂O) of [1] = [4] = 10 mM.

Figure S5. ¹H NMR spectra (500 MHz, 298 K, D₂O) of: (a) [1] = 10 mM, (b) [1] = [5] = 10 mM and (c) [5] = 10 mM. (d) The 2D NOESY spectrum (500 MHz, 298 K, D₂O) of [1] = [5] = 10 mM.

Figure S6. ¹H NMR spectra (500 MHz, 298 K, D₂O) of: (a) [1] = 10 mM, (b) [1] = [6] = 10 mM and (c) [6] = 10 mM. (d) The 2D NOESY spectrum (500 MHz, 298 K, D₂O) of [1] = [6] = 10 mM.

Figure S7. ¹H NMR spectra (500 MHz, 298 K, D₂O) of: (a) [1] = 10 mM, (b) [1] = [7] = 10 mM and (c) [7] = 10 mM. (d) The 2D NOESY spectrum (500 MHz, 298 K, D₂O) of [1] = [7] = 10 mM.