Electronic Supplementary Information

The design of phenylboronic acid azoprobe/polyamidoamine dendrimer complexes as a supramolecular sensor for saccharide recognition in water

Yuji Tsuchido,^a Yuuki Sakai,^a Keisuke Aimu,^a Takeshi Hashimoto,^a Kazunari Akiyoshi,^{b,c} and Takashi Hayashita*^a

^a Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan. Fax: +81-3-3238-3361; Tel: +81-3-3238-3372; E-mail: ta-hayas@sophia.ac.jp

^b Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. Fax: +81-75-383-2590; Tel: +81-75-383-2589

^c ERATO Bio-nanotransporter Project, Japan Science and Technology Agency (JST), Katsura Int'tech Center, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8530, Japan

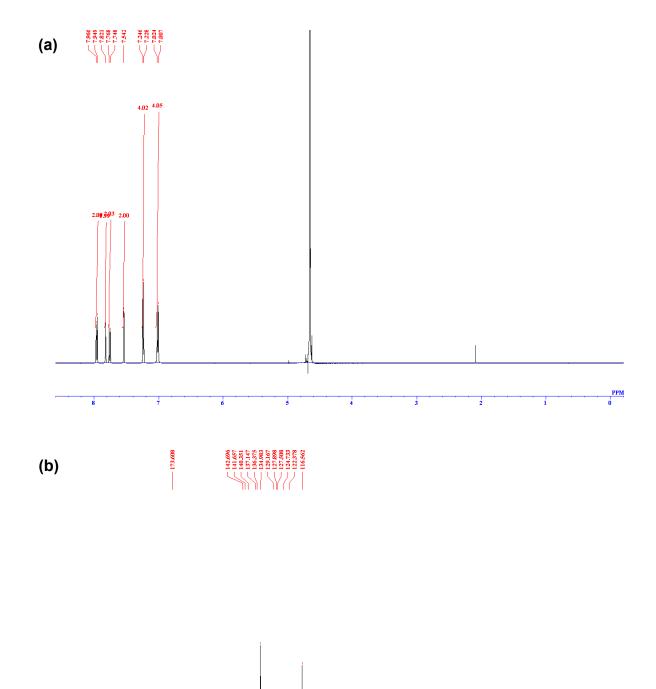


Figure S1. (a) ¹H NMR and (b) ¹³C NMR spectra of 1-BAzo-NP.

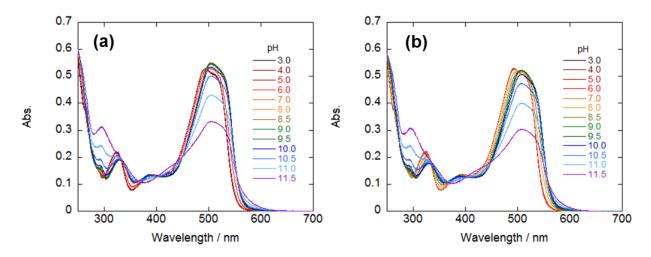


Figure S2. UV-Vis spectral changes of 1-BAzo-NP by changing pH. [1-BAzo-NP] = 0.02 mM, [fructose] = (a) 30 mM, (b) 0 mM, [H₃PO₄] = 1.0 mM.

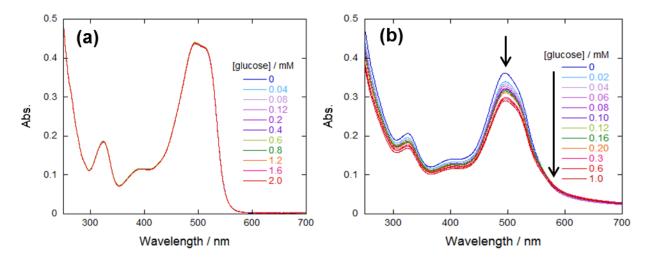


Figure S3. Spectral changes of (a) 1-BAzo-NP and (b) 1-BAzo-NP/PAMAM-G4 by the addition of glucose. [1-BAzo-NP] = 0.02 mM, [PAMAM-G4] = (a) 0 or (b) 0.62 μ M (amine unit base: 0.04 mM), [saccharide] = 0-2 mM, [H₃PO₄] = 1 mM, pH 7.0.

(a)
$$\begin{bmatrix} H_2C - CH \\ CH_2 \\ NH_2 \end{bmatrix}_{n}$$
 (b)
$$O$$

$$NH_2$$

Figure S4. Chemical structure of (a) polyallylamine and (b) N-(2-aminoethyl)acetamide.

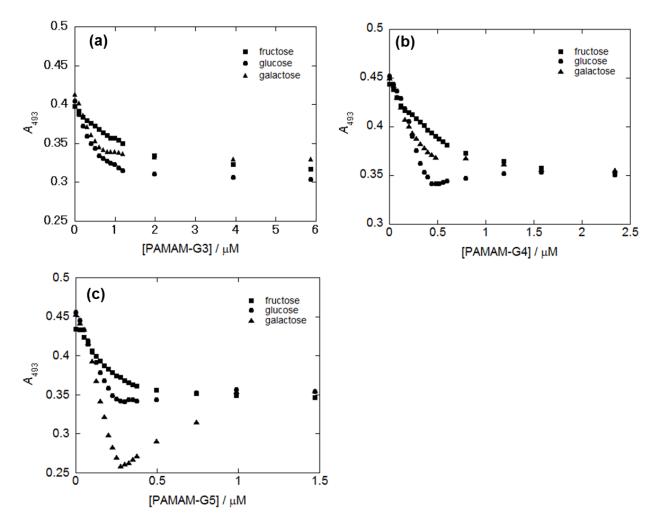


Figure S5. Changes of the absorption at 493 nm of 1-BAzo-NP with various saccharides (none, fructose, glucose, galactose) by the addition of (a) PAMAM-G3, (b) PAMAM-G4, and (c) PAMAM-G5. [1-BAzo-NP] = 0.02 mM, [saccharide] = 30 mM, $[H_3PO_4] = 1.0$ mM, pH 7.0, and (a) [PAMAM-G3] = 0-6 μ M (amine unit base: 0-0.2 mM), (b) [PAMAM-G4] = 0-3 μ M (amine unit base: 0-0.2 mM).