Molecular electrostatic potential dependant selectivity of hydrogen bonding

Christer B Aakeröy*a, Tharanga K Wijethungaa and John Despera

Department of Chemistry, Kansas State University, Manhattan, KS 66506

aakeroy@ksu.edu

Supplementary Information

Table of content

1.	Experimental – synthesis of acceptors	3
2.	IR Data	6
3.	Crystallographic data	7
4.	Stoichiometric studies – NMR spectra	11
5.	IR analysis for stoichiometric studies	19

Experimental – synthesis of acceptors

Synthesis of 1,1'-bis(pyridin-4-ylmethyl)-2,2'-biimidazole, A1

2,2'-Biimidazole (0.27g, 2 mmol) and NaOH (0.32 g, 8 mmol) were placed in a 100mL round bottomed flask with 20 mL of acetonitrile. The mixture was stirred at room temperature for two hours. 4-Picolyl chloride hydrochloride (0.65 g, 4 mmol) in acetonitrile (20 mL) was added to the mixture and refluxed for 24 hours at 50° C – 60° C. The reaction was monitored with TLC and after completion the solvent was removed by rotary evaporation. The residue was dissolved in water (50 mL) and extracted with methylene chloride (30 mL x 3). Organic layers were combined, dried over anhydrous MgSO₄ and rotary evaporated to obtain the dark brown color powder as the product. Yield: 0.35 g (56%); mp 157-160°C (lit. 157-160°C)¹; ¹H NMR ($\delta_{\rm H}$; CDCl₃, 400MHz):8.49 (d, 4H), 7.11 (d, 2H), 6.94 (d, 2H), 6.91 (d, 4H), 5.84 (s, 4H).

Synthesis of 1,1'-bis(pyridin-3-ylmethyl)-2,2'-biimidazole, A2

2,2'-Biimidazole (0.27g, 2 mmol) and NaOH (0.32 g, 8 mmol) were placed in a 100mL round bottomed flask with 20 mL of acetonitrile. The mixture was stirred at room temperature for two hours. 3-Picolyl chloride hydrochloride (0.65 g, 4 mmol) in acetonitrile (20 mL) was added to the mixture and refluxed for 24 hours at 50° C – 60° C. The reaction was monitored with TLC and upon completion the solvent was removed by rotary evaporation. The residue was dissolved in water (50 mL) and extracted with methylene chloride (30 mL x 3). Organic layers were combined, dried over anhydrous MgSO₄ and rotary evaporated to obtain the brown color powder as the product. Yield: 0.45 g (71%); mp 112-115°C (lit. 112-115°C)1; ¹H NMR ($\delta_{\rm H}$; CDCl₃, 400MHz):8.46 (d, 2H), 8.45 (s, 2H), 7.39 (d, 2H), 7.17 (m, 2H), 7.11 (d, 2H), 6.95 (d, 2H), 5.78 (s, 4H).

Synthesis of 1,1'-bis(pyridin-2-ylmethyl)-2,2'-biimidazole, A3

2,2'-Biimidazole (0.27g, 2 mmol) and NaOH (0.32 g, 8 mmol) were placed in a 100mL round bottomed flask with 20 mL of acetonitrile. The mixture was stirred at room temperature for two hours. 2-Picolyl chloride hydrochloride (0.65 g, 4 mmol) in acetonitrile (20 mL) was added to the mixture and refluxed for 24 hours at 50° C – 60° C. The reaction was monitored with TLC and upon completion the solvent was removed by rotary evaporation. The residue was dissolved in water (50 mL) and extracted with methylene chloride (30 mL x 3). Organic layers were combined, dried over anhydrous MgSO₄ and rotary evaporated to obtain the pale brown color powder as the product. Yield: 0.25 g (40%); mp 180-183°C (lit. 180-183°C)1; ¹H NMR ($\delta_{\rm H}$;CDCl₃, 400MHz): 8.53 (d, 2H), 7.53 (t, 2H), 7.15 (t, 2H), 7.12 (s, 2H), 7.07 (s, 2H), 7.05 (d, 2H), 5.87 (s, 4H).

Synthesis of 1,1'-dibenzyl-2,2'-biimidazole, A4

2,2'-Biimidazole (0.33g, 2.48 mmol) and NaOH (0.39 g, 9.92 mmol) were placed in a 100mL round bottomed flask with 20 mL of acetonitrile. The mixture was stirred at room temperature

for two hours. Benzyl bromide (0.63 g, 5 mmol) in acetonitrile (20 mL) was added to the mixture and refluxed for 24 hours at 50°C – 60°C. The reaction was monitored with TLC and after completion the solvent was removed by rotary evaporation. The residue was dissolved in water (50 mL) and extracted with methylene chloride (30 mL x 3). Organic layers were combined, dried over anhydrous MgSO₄ and rotary evaporated to obtain the yellow color powder as the product. Yield: 0.69 g (89%); mp 144-146°C (lit. 144-146°C)1; ¹H NMR ($\delta_{\rm H}$; CDCl₃, 400MHz):5.70 (s, 4H), 6.93 (d, 2H), 7.03 (m, 4H), 7.12 (d, 2H), 7.24 (m, 6H).

NMR spectra

Figure S1: NMR spectrum of 1,1'-bis(pyridin-4-ylmethyl)-2,2'-biimidazole, A1

Figure S2: NMR spectrum of 1,1'-bis(pyridin-3-ylmethyl)-2,2'-biimidazole, A2

Figure S3: NMR spectrum of 1,1'-bis(pyridin-2-ylmethyl)-2,2'-biimidazole, A3

Figure S4: NMR spectrum of 1,1'-dibenzyl-2,2'-biimidazole, A4

IR data

Table S1: IR data

	Carbonyl s	stretch (cm ⁻¹)	O-HN	C (10	
Mixture	Di-acid	Ground mixture	starches (cm ⁻¹)	Co-crystal?	
A1:Suc	1685	1692	2532,1870	Y	
A1:Adi	1685	1687	2600,1900	Y	
A1:Sub	1685	1688	2500,1906	Y	
A1:Seb	1686	1689	2497,1896	Y	
A1:Dod	1686	1689	2541,1914	Y	
A1:Mal	1696	1692	2586,1900	Y	
A1:Glu	1683	1694	2590,1900	Y	
A1:Pim	1685	1688	2450,1900	Y	
A1:Aze	1689	1688	2500,1940	Y	
A2:Suc	1685	1686	2532,1900	Y	
A2:Adi	1685	1688	2488,1915	Y	
A2:Sub	1685	1689	2495,1900	Y	
A2:Seb	1686	1686	2499,1924	Y	
A2:Dod	1686	1686	2495,1922	Y	
A2:Mal	1696	1716	2561,1964	Y	
A2:Glu	1683	1701	2588,1941	Y	
A2:Pim	1685	1690	2530,1941	Y	
A2:Aze	1689	1690	2528,1924	Y	
A3:Suc	1685	1695	2503,1943	Y	
A3:Adi	1685	1691	2528,1895	Y	
A3:Sub	1685	1690	2495,1850	Y	
A3:Seb	1686	1701	2520,1888	Y	
A3:Dod	1686	1698	2495,1865	Y	
A3:Mal	1696	1708	2582,1980	Y	
A3:Glu	1683	1689	2550,1957	Y	
A3:Pim	1685	1689	2511,1942	Y	
A3:Aze	1689	n/a	n/a	N	
A4:Suc	1685	1681	n/a	N	
A4:Adi	1685	1686	n/a	N	
A4:Sub	1685	1686	n/a	N	
A4:Seb	1686	1689	n/a	N	
A4:Dod	1686	1686	n/a	N	
A4:Mal	1696	1701	2586,1970	Y	
A4:Glu	1683	1685	2600,1900	Y	
A4:Pim	1685	1687	n/a	N	
A4:Aze	1689	1686	n/a	N	

Crystallographic data

Datasets were collected on a Bruker Kappa APEX II system using CuK α radiation (01_A1:Dod, 02_A1:Suc, 06_A3:Seb, 07_A3:Sub, 08_A3:Dod, 09_A1:Seb, 10_A4:Mal) or a on a Bruker APEX II system using MoK α radiation (03_A3:Adi, 04_A1:Sub, 05_A1:Adi, 11_A1:Glu, 12_A1:Mal, 13_A3:Pim). Data were collected using APEX2 software.^(a) Initial cell constants were found by small widely separated "matrix" runs. Data collection strategies were determined using COSMO.^(b) Scan speed and scan widths were chosen based on scattering power and peak rocking curves. All datasets were collected at -153 °C using an Oxford Croystream low-temperature device.

Unit cell constants and orientation matrix were improved by least-squares refinement of reflections thresholded from the entire dataset. Integration was performed with SAINT,^(c) using this improved unit cell as a starting point. Precise unit cell constants were calculated in SAINT from the final merged dataset. Lorenz and polarization corrections were applied. Multi-scan absorption corrections were performed with SADABS^(d).

Data were reduced with SHELXTL.^(e) The structures were solved in all cases by direct methods without incident. Except as noted, hydrogen atoms were located in idealized positions and were treated with a riding model. All non-hydrogen atoms were assigned anisotropic thermal parameters. Refinements continued to convergence, using the recommended weighting schemes.

01 A1:Dod Both the amine and the diacid sit on crystallographic inversion centers. Coordinates of the unique carboxylic acid proton H31 were allowed to refine.

02 A1:Suc Both the amine and the diacid sit on crystallographic inversion centers. Coordinates of the unique carboxylic acid proton H31 were allowed to refine.

03 A3:Adi Both the amine and the diacid sit on crystallographic inversion centers. Coordinates of the unique carboxylic acid proton H31 were allowed to refine.

04 A1:Sub Both the amine and the diacid sit on crystallographic inversion centers. Coordinates of the unique carboxylic acid proton H31 were allowed to refine.

05 A1:Adi Both the amine and the diacid sit on crystallographic inversion centers. Coordinates of the unique carboxylic acid proton H31 were allowed to refine.

06 A3:Seb Both the amine and the diacid sit on crystallographic inversion centers. Coordinates of the unique carboxylic acid proton H31 were allowed to refine.

07 A3:Sub Both the amine and the diacid sit on crystallographic inversion centers. Coordinates of the unique carboxylic acid proton H31 were allowed to refine.

08 A3:Dod Both the amine and the diacid sit on crystallographic inversion centers. Coordinates of the unique carboxylic acid proton H31 were allowed to refine.

09 A1:Seb The crystal was a nonmerohedral twin and the data were processed with TWINABS^(f). Both the amine and the diacid sit on crystallographic inversion centers. Coordinates of the unique carboxylic acid proton H31 were allowed to refine.

10 A4:Mal Both the amine and the diacid sit on general positions. Coordinates of the carboxylic acid protons H51 and H53 were allowed to refine.

11 A1:Glu The amine sits on crystallographic inversion centers; the diacid sits on a general position, giving 1 : 2 amine : diacid stoichiometry. Coordinates of the carboxylic acid protons H31 and H35 were allowed to refine.

12 A1:Mal Both the amine and the diacid sit on general positions. Two orientations for one pyridine moiety (N41-C46) and one acid moiety (C53 / O53 / O54), representing different orientations of the –COOH group, were located in the difference map. Relative populations were allowed to refine. Thermal parameters were pairwise constrained using EADP commands. Geometry of the pyridine rings were restrained using the SAME command. All hydrogen atoms were included in calculated positions and were allowed to ride.

13 A3:Pim The amine sits on crystallographic inversion centers; the diacid sits on a general position, giving 1 : 2 amine : diacid stoichiometry. Coordinates of the carboxylic acid protons H31 and H37 were allowed to refine.

- (a) APEXII v2009. 5-1, © 2009, Bruker Analytical X-ray Systems, Madison, WI.
- (b) COSMO v1. 60, © 1999 2009, Bruker Analytical X-ray Systems, Madison, WI.
- (c) SAINT v7. 60a, © 1997 2008, Bruker Analytical X-ray Systems, Madison, WI.
- (d) SADABS v2008/1, © 2008, Bruker Analytical X-ray Systems, Madison, WI.
- (e) SHELXTL v2008/4, © 2008, Bruker Analytical X-ray Systems, Madison, WI.
- (f) TWINABS v2012/1, © 2012, Bruker Analytical X-ray Systems, Madison, WI.

Table S2: Crystallographic data

Code	A1:Dod	A1:Suc	A3:Adi	A1:Sub	A1:Adi	A3:Seb	A3:Sub
Systematic	1,1'-di[(4-	1,1'-di[(4-	1,1'-di[(2-	1,1'-di[(4-	1,1'-di[(4-	1,1'-di[(2-	1,1'-di[(2-
name	pyridyl)-	pyridyl)-	pyridyl)-	pyridyl)-	pyridyl)-	pyridyl)-	pyridyl)-
	methyl]-	methyl]-	methyl]-	methyl]-	methyl]-	methyl]-	methyl]-
	2,2'-	2,2'-	2,2'-	2,2'-	2,2'-	2,2'-	2,2'-
	biimidazole	biimidazole	biimidazole	biimidazole	biimidazole	biimidazole	biimidazole
	HOOC-	, HOOC-	, HOOC-	, HOOC-	, HOOC-	, HOOC-	, HOOC-
	(CH ₂) ₁₀ -	(CH ₂) ₂ -	(CH ₂) ₄ -	(CH ₂) ₆ -	(CH ₂) ₄ -	(CH ₂) ₈ -	(CH ₂) ₆ -
	COOH	СООН	СООН	СООН	СООН	СООН	СООН
Formula	$(C_{18}H_{16}N_6)$	$(C_{18}H_{16}N_6)$	$(C_{18}H_{16}N_6)$	$(C_{18}H_{16}N_6)$	$(C_{18}H_{16}N_6)$	$(C_{18}H_{16}N_6)$	$(C_{18}H_{16}N_6)$
moiety	$(C_{12}H_{22}O_4)$	$(C_4H_6O_4)$	$(C_6H_{10}O_4)$	$(C_8H_{14}O_4)$	$(C_6H_{10}O_4)$	$(C_{10}H_{18}O_4)$	$(C_8H_{14}O_4)$
Empirical	$C_{30}H_{38}N_6O_4$	$C_{22}H_{22}N_6O_4$	$C_{24}H_{26}N_6O_4$	$C_{26}H_{30}N_6O_4$	$C_{24}H_{26}N_6O_4$	$C_{28}H_{34}N_6O_4$	$C_{26}H_{30}N_6O_4$
formula							
Molecular	546.66	434.46	462.51	490.56	462.51	518.61	490.56
weight							
Color, Habit	bronze	colorless	colourless	orange	bronze	colourless	colourless
	prism	prism	plate	plate	plate	prism	prism
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
Space group, Z	P-1, 1	P-1, 1	P-1, 1	P-1, 1	P-1, 1	P-1, 1	P-1, 1
a, A ³	5.6047(8)	4.8468(8)	5.0121(5)	5.6196(11)	5.5146(11)	5.2731(8)	5.1024(10)
b, A ³	6.8589(10)	9.2594(16)	7.8964(8)	6.7825(13)	6.8100(14)	7.8464(11)	8.0128(15)
c, A ³	18.879(3)	12.245(2)	15.1589(16	16.078(3)	15.254(3)	17.163(3)	16.497(3)
a °	97 644(5)	69 536(7)	78 403(4)	87 236(4)	79 288(6)	81 964(6)	99 940(9)
B °	91 164(5)	89 567(7)	88 333(4)	82 669(4)	85 259(6)	88 938(6)	93.967(10)
γ ^ο	104659(5)	85,993(7)	72 636(3)	75451(4)	75 952(5)	72 499(6)	108 231(8)
Volume Å ³	$694\ 80(18)$	51350(15)	560 62(10)	588 22(19)	545.60(19)	670.38(17)	6255(2)
Density g/cm ³	1 307	1 405	1 370	1 385	1 408	1 285	1 302
Temperatur.	120(2)	120(2)	120(2)	120(2)	120(2)	120(2)	120(2)
°K	120(2)	120(2)	120(2)	120(2)	120(2)	120(2)	120(2)
Crystal size,	0.22 x 0.28	0.236 x	0.10 x 0.26	0.12 x 0.30	0.10 x 0.32	0.14 x 0.26	0.20 x 0.28
min x mid x	x 0.32	0.239 x	x 0.36	x 0.36	x 0.38	x 0.32	x 0.32
max		0.543					
X-ray	1.54178	1.54178	0.71073	0.71073	0.71073	1.54178	1.54178
wavelength, Å							
μ, mm ⁻¹	0.716	0.827	0.096	0.096	0.099	0.715	0.737
Absorption corr	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
Trans min /	0.8032 /	0.645 /	0.9662 /	0.9662 /	0.9634 /	0.8035 /	0.7983 /
max	0.8584	0.753	0.9904	0.9886	0.9902	0.9065	0.8666
θ _{min} , °	2.36	3.85	1.37	3.10	3.13	5.21	2.74
θ _{max} , °	68.24	67.98	32.01	32.75	32.02	67.90	66.73
Reflections							
collected	9252	6345	12569	10698	7187	11734	9109
independent	2438	1799	3713	3929	3167	2326	2111
observed	2269	1660	3150	3433	2613	2145	1891
Threshold	>2σ (I)	>2ơ (I)	>2ơ (I)	>2σ (I)	>2ơ (I)	>2ơ (I)	>2ơ (I)
expression		.,			.,	.,	.,
R1 (observed)	0.0523	0.0507	0.0434	0.0458	0.0467	0.0327	0.0496
D (II)	0.1716	0.1400	0.1317	0.1329	0.1358	0.0850	0.1580
WK_2 (all)	1 472		1.116	1 014	1 099	1.060	1 1 7 6
Goodness of fit	1.4/2	1.084	1.110	1.011	1.077	1.000	1.170
WK ₂ (all) Goodness of fit (all)	1.4/2	1.084	1.110	1.011	1.077	1.000	1.170
$\frac{WK_2 \text{ (all)}}{\text{Goodness of fit}}$ (all) $\Delta \rho \max / \min$	0.311 / -	1.084 0.355 / -	0.325 / -	0.459 / -	0.414 / -	0.167 / -	0.225 / -
$\frac{WR_2 \text{ (all)}}{\text{Goodness of fit}}$ (all) $\frac{\Delta\rho \max / \min}{\rho \max / \min}$	0.311 / - 0.242	1.084 0.355 / - 0.431 67 50	0.325 / - 0.289	0.459 / - 0.308	0.414 / - 0.223	0.167 / - 0.185	0.225 / - 0.274
WR_2 (all)Goodness of fit (all) $\Delta \rho$ max / min20 limitCompleteness	0.311 / - 0.242 67.50 0.968	1.084 0.355 / - 0.431 67.50 0.969	0.325 / - 0.289 30.00 0.994	0.459 / - 0.308 30.00 0.971	0.414/- 0.223 27.50 0.973	0.167 / - 0.185 67.50 0.957	0.225 / - 0.274 66.73 0.952

Code	A3:Dod	A1:Seb	A4:Mal	A1:Glu	A1:Mal	A3:Pim
Systematic	1,1'-di[(2-	1,1'-di[(3-	1,1'-	1,1'-di[(4-	1,1'-di[(4-	1,1'-di[(2-
name	pyridyl)-	pyridyl)methy	di[(phenyl)-	pyridyl)_	pyridyl)-	pyridyl)methy
	methyl]-2,2'-	1]-2,2'-	methyl]-2,2'-	methyl]-2,2'-	methyl]-2,2'-	1]-2,2'-
	biimidazole,	biimidazole,	biimidazole,	biimidazole,	biimidazole,	biimidazole,
	HOOC-	HOOCH-	HOOC-CH ₂ -	(HOOC-	HOOC-(CH ₂)-	[HOOC-
	$(CH_2)_{10}$ -	(CH ₂) ₈ -COOH	COOH	(CH ₂) ₃ -	COOH	(CH ₂) ₅ -
	СООН			COOH) ₂		COOH] ₂
Formula	$(C_{18}H_{16}N_6)$	$(C_{18}H_{16}N_6)$	$(C_{20}H_{18}N_4)$	$(C_{18}H_{16}N_6)$	$(C_{18}H_{16}N_6)$	$(C_{18}H_{16}N_6)$
moiety	$(C_{12}H_{22}O_4)$	$(C_{10}H_{18}O_4)$	$(C_3H_4O_4)$	$(C_5H_8O_4)_2$	$(C_3H_4O_4)$	$(C_7H_{12}O_4)_2$
Empirical	$C_{30}H_{38}N_6O_4$	$C_{28}H_{34}N_6O_4$	$C_{23}H_{22}N_4O_4$	$C_{28}H_{32}N_6O_8$	$C_{21}H_{20}N_6O_4$	$C_{32}H_{40}N_6O_8$
formula						
Molecular	546.66	518.61	418.45	580.60	420.43	636.70
weight	1 1	1.	11 .	1 ·	1 1	1 1
Color, Habit	colourless	orange plate	yellow prism	bronze prism	colourless	colourless
Constal	prism Trialinia	Taialiaia	Manaalinia	Tuislinis	needle	Trislinis
Crystal	Iriclinic	Iriclinic	Monoclinic	Iriclinic	Monoclinic	Iriclinic
System Space group	D 1 1	D 1 1	$D^{2}(1)/m^{4}$	D 1 1	$D^{2}(1)/a$	D 1 1
space group,	P-1, 1	P-1, 1	P2(1)/11, 4	P-1, 1	P2(1)/C, 4	P-1, 1
a Å ³	5 2955(8)	5 6320(7)	11 4449(17)	7 6142(11)	14 797(3)	4 9161(10)
$\mathbf{h} \mathbf{A}^3$	7 8185(13)	6 8450(8)	8 9002(15)	8 6608(13)	45097(7)	8.0077(16)
$\dot{\mathbf{c}}$ $\dot{\mathbf{A}}^3$	18424(3)	17748(2)	21.338(3)	11 0348(16)	$\frac{4.3097(7)}{29.886(5)}$	20.828(4)
a °	85 042(10)	93 630(7)	90.00	102 357(5)	90.00	87 266(11)
в.°	83 543(10)	98 988(7)	94 855(10)	105.996(5)	104.056(8)	88 665(10)
γ.°	71 912(10)	104 670(7)	90.00	93 866(5)	90.00	72.608(9)
Volume, Å ³	719.4(2)	649.97(13)	2165.7(6)	677.09(17)	1934.6(6)	781.5(3)
Density,	1.262	1.325	1.283	1.424	1.444	1.353
g/cm ³						
Temperature,	120(2)	120(2)	120(2)	120(2)	120(2)	120(2)
°K						
Crystal size,	0.16 x 0.24 x	0.10 x 0.26 x	0.14 x 0.18 x	0.18 x 0.36 x	0.08 x 0.10 x	0.08 x 0.18 x
min x mid x	0.28	0.34	0.24	0.44	0.36	0.38
max	1.54150	1.54170	1.54150	0.51052	0.51052	0.51052
X-ray	1.54178	1.54178	1.54178	0.71073	0.71073	0./10/3
wavelength,						
A u mm-1	0.602	0.737	0.737	0.106	0.104	0.000
μ, mm Absorption	multi-scan	0.757 multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
corr	mun-sean	mun-sean	mun-sean	mun-sean	mun-seam	mun-sean
Trans min /	0.8299 /	0.7876/	0.8430 /	0.9547 /	0.9636 /	0.9635 /
max	0.8974	0.9299	0.9039	0.9811	0.9918	0.9922
θ _{min} , °	2.42	2.54	4.16	1.98	1.42	0.98
θ _{max} , °	68.34	68.93	67.60	32.68	30.08	31.05
Reflections						
collected	11812	4606	10824	17551	20190	21382
independent	2493	4606	3641	4555	5562	4657
observed	2079	3942	2941	4015	2992	2306
Threshold	>2σ (I)	>2σ (I)	>2σ (I)	>2σ (I)	>2σ (I)	>2σ (I)
expression	0.0116	0.0550	0.0417	0.0422	0.0150	0.0007
KI (choone 1)	0.0446	0.0550	0.0417	0.0422	0.0652	0.0996
(observed)	0 1225	0.1076	0.1404	0 1221	0.1027	0.2647
WK ₂ (all)	0.1333	0.19/0	0.1494	0.1231	0.1937	0.204/
fit (all)	1.100	1.344	1.102	0.9/3	0.997	1.280
Ao may / min	0 226 / -0 329	0 322 / -0 451	0 352 / -0 367	0 430 / -0 279	0 271 / -0 418	0.455 / -0.418
20 limit	67 50	68 93	66 00	30.00	30.00	30.00
Completeness	0.954	0.974	0.952	0.994	0.981	0.979
to 2θ limit						
•						

Stoichiometric studies – NMR data

Mixed Stoichiometry 1:1 (Acceptor:Acid)

Crystal stoichiometry - 1:1 (Acceptor:Acid)

3) A1:Seb

Crystal stoichiometry - 1:1 (Acceptor:Acid)

Crystal stoichiometry - 1:1 (Acceptor:Acid)

5) A3:Adi

Crystal stoichiometry - 1:1 (Acceptor:Acid)

7) A3:Seb

8) A3:Dod

Mixed Stoichiometry 1:4 (Acceptor:Acid)

3) Crystal stoichiometry – 1:2 (Acceptor:Acid) - A1:Sub₂

Crystal stoichiometry - 1:1 (Acceptor:Acid)

Crystal stoichiometry - 1:1 (Acceptor:Acid)

Crystal stoichiometry - 1:2 (Acceptor:Acid) - A3:Sub₂

Crystal stoichiometry - 1:1 (Acceptor:Acid)

IR analysis for stoichiometric studies

O-H out of plane bend stretch analysis in the finger print region of Suberic acid, A1:Sub and A1:Sub₂ Co-crystals are shown below. Similar results were observed for A3:Sub and A3:Sub₂ co-crystals providing evidence for the absence of acid---acid dimer, thus the presence of four O-H---N hydrogen bond interactions leading to 1:2 co-crystal formation in A1:Sub₂ and A3:Sub₂.

1 C.B. Aakeröy, T.K. Wijethunga, J. Desper, J. Mol. Struct., 2014, 1072, 20.