Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supporting information

Assembly of CdS Quantum Dots-TiO₂ Nanobelts Heterostructure for Photocatalytic Application: Towards Efficient Visible Light Photocatalyst *via* Facile Surface Charge Tuning

Junyu Zhang^a, Fang-Xing Xiao^{b*}, Guangcan Xiao^{a*}, Bin Liu^{b*}

a College of Chemistry and Chemical Engineering, Instrumental Measurement and Analysis Center, Fuzhou University, Fuzhou, 350002, People's Republic of China.

b School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.

Figure S1. (a) UV-vis spectrum, (b) FTIR, (c) zeta potential, and (d) TEM image of CdS QDs.

Figure S2. (a) Survey XPS spectrum and (b) high-resolution spectra of N1s and (c) C 1s for TiO_2 NBs-CdS QDs heterostructure.

Figure S3. FTIR spectra of (a) blank TiO_2 NBs, (b) APTES- TiO_2 NBs, and (c) TiO_2 NBs-CdS QDs heterostructure.

Element	Peak BE	Chemical Bond Species	
C 1s A	284.59	С-С/С-Н	
C 1s B	286.08	C-OH/C-O-C	
C 1s C	287.73	Carboxylate (CO ₃ ²⁻)	
O 1s A	529.76	Lattice Oxygen	
O 1s B	532.05	СООН	
Ti 2p _{3/2}	458.48	Anatase (+4)	
Cd 3d _{5/2}	405.25	Cd (+2)	
S 2p _{3/2}	161.15	S (2 ⁻)	

Table S1. Chemical bond species versus binding energy for TiO₂ NBs-CdS QDs heterostructure

Table S2. Elemental percentage for TiO_2 NBs-CdS QDs heterostructure

Name	Peak (eV)	Chemical Bond Specie	At. %
C1s Scan A	284.59	С-С/С-Н	16.17
C1s Scan B	286.08	C-OH/C-O-C	11.05
C1s Scan C	287.73	Carboxylate (CO_3^{2-})	6.05
O1s Scan A	529.76	Lattice Oxygen	24.66
O1s Scan B	532.05	СООН	23.41
Ti2p _{7/2}	458.48	Anatase (+4)	12.99
Cd3d _{7/2}	405.25	Cd (+2)	3.45
S2p _{3/2}	161.3	S (2-)	2.02

Figure S4. Photographs of blank TiO₂ NBs (*right: white*), TiO₂ NBs/CdS QDs (*middle: light yellow*), and TiO₂ NBs-CdS QDs heterostructure (*left: yellow*).

Figure S5. Blank experiments for photodegradation of RhB over TiO_2 NBs-CdS QDs heterostructure.

Figure S6. Cycling photocatalytic performances of blank CdS QDs film deposited on Ti foil under visible light irradiation ($\lambda > 420$ nm).

Figure S7. (a) Transient photocurrent responses and (b) Electrochemical impedance spectroscopy (EIS) of blank CdS QDs film deposited on Ti foil in 1 M KOH (pH = 13.9) aqueous solution under visible light irradiation ($\lambda > 420$ nm), the amplitude of the sinusoidal wave was set at 10 mV and the frequency varied from 100 kHz to 0.05 Hz.