Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supplementary Information

Energetic Alliance of Tetrazole-1-oxides and 1,2,5-Oxadiazoles

Dennis Fischer, Thomas M. Klapötke, Marius Reymann, Jörg Stierstorfer and Maurus B. R. Völkl

Department of Chemistry, Energetic Materials Research, Ludwig Maximilian University Butenandtstr. 5–13 (D), 81377 München (Germany)

Content

1	2	X-ra	ay Diffraction	1
2	(Cor	nputations	5
	2.1	1	Heat of Formation	5
	2.2	2	Detonation Parameters	7
3	ł	Exp	perimental Procedures	7
4	ł	Ref	erences	8

1 X-ray Diffraction

Suitable single crystals of the described compounds (**3–6**, **11**,**12**, **14–17**, **20** and **23**) were measured by X-ray diffraction. For all compounds, an Oxford Xcalibur3 diffractometer with a CCD area detector was employed for data collection using Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å). By using the CRYSALISPRO software^[S1] the data collection and reduction were performed. The structures were solved by direct methods (SIR-92^[S3], SIR-97^[S3] or SHELXS-97^[S4]) and refined by full-matrix least-squares on *F*2 (SHELXL ^[S4]) and finally checked using the PLATON software ^[S5] integrated in the WinGX software suite^[S6]. The non-hydrogen atoms were refined anisotropically and the hydrogen atoms were located and freely refined. The absorptions were corrected by a SCALE3 ABSPACK multiscan method^[S7]. In the case of chiral space groups "Friedel pairs" were merged using the SHELX command "MERG 3". DIAMOND2 plots are shown with thermal ellipsoids at the 50% probability level.

Compound	3	4	5	6
Formula				
	196 15	202 15		
[a mol ⁻¹]	100.15	202.15	225.00	241.00
Crystal	monoclinic	monoclinic	monoclinic	orthorhombic
Space	C2/c (No. 15)	<i>P</i> 2 ₁ / <i>n</i> (No. 14)	<i>P</i> 2 ₁ / <i>n</i> (No. 14)	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)
Color/Habit	colorless rod	colorless block	light-yellow block	colorless plate
Size [mm]	0.10×0.28×0.32	0.14x0.19x0.23	0.17×0.23×0.47	0.04×0.24x0.25
a [Å] b [Å] c [Å]	12.844(3) 8.919(5) 6.988(4)	6.9708(14) 14.408(2) 7.8104(13)	8.2678(6) 11.2186(7) 8.5693(5)	6.9850(5) 8.4845(5) 13.8574(9)
α [°]	90	90	90	90
$\beta[^{\circ}]$	112.147(5)	105.99(2)	99.912(6)	90
ý [°]	90	90	90	90
V [Å ³]	741.5(6)	754.1(2)	782.97(9)	821.25(9)
Ζ	4	4	4	4
$ ho_{calc.}$ [q cm ⁻³]	1.668	1.781	1.909	1.949
μ [mm ⁻¹]	0.143	0.158	0.807	0.785
F(000)	384	416	448	480
λ _{MoKα} [Å]	0.71073	0.71073	0.71073	0.71073
T [K]	100	173	100	100
θ min-max ^{[°1}	4.6, 26.0	4.5, 26.5	4.2, 26.0	4.1, 26.0
Dataset h;	-13:15;-10:10;-8:8	-8:7; -17:18; -9:9	-10:10;-13:13;-10:10	-8:4;-10:10;-16:17
Reflect.	2426	3900	5523	4265
Independ. refl.	725	1547	1531	1607
R _{int}	0.037	0.026	0.035	0.037
Reflection obs.	725	1301	1531	1607
No.	72	151	126	135
parameters		0.0405	0.0004	0.0070
R_1 (ODS)	0.0388	0.0485	0.0291	0.0270
wR ₂ (all data)	0.1058	0.1288	0.0736	0.0616
S	1.08	1.14	1.06	1.04
Resd. Dens. [e Å ⁻³]	-0.23, 0.22	-0.22, 0.34	-0.31, 0.31	-0.26, 0.55
Device type	Oxford Xcalibur3 CCD	Oxford Xcalibur3 CCD	Oxford Xcalibur3 CCD	Oxford Xcalibur3 CCD
Solution	SHELAS-9/	SIK-9/	51K-92	51K-92
Refinement	SHELXL-97	SHELXL-97	SHELXL-97	SHELXL-97
Absorpt. corr.	multi-scan	multi-scan	multi-scan	multi-scan
CCDC	988408	988403	988407	988406

Table S1	Crystallographic data of 3–6.
----------	-------------------------------

Compound	11	12	14	15
Formula	$K_2C_4H_4N_{10}O_5$	$K_2C_4N_{10}O_4$	C ₄ H ₁₀ N ₁₂ O ₇	C ₄ H ₈ N ₁₂ O ₃
FW [g mol ⁻¹]	350.37	330.34	338.24	272.18
Crystal svstem	monoclinic	triclinic	monoclinic	orthorhombic
Space Group	<i>P</i> 2 ₁ /c (No. 14)	<i>P</i> −1 (No. 2)	<i>P</i> 2 ₁ (No. 4)	<i>Pbca</i> (No. 61)
Color/Habit	colorless block	colorless rod	colorless block	colorless needles
Size [mm]	0.12×0.19×0.26	0.09×0.13×0.20	0.11×0.18×0.31	0.04×0.07×0.15
a [Å] b [Å] c [Å] α [°] β [°] γ [°] V [Å ³]	7.4337(4) 21.6146(9) 7.5901(4) 90 97.741(5) 90 1208.44(10)	7.1412(6) 7.2056(8) 11.4980(9) 89.658(7) 73.514(7) 64.814(9) 508.88(9)	8.0286(12) 8.0668(11) 9.6666(15) 90 90.004(12) 90 626.06(16)	14.5573(13) 7.5523(7) 19.5093(14) 90 90 90 2144.9(3)
Z	4	2	2	8
$\rho_{\text{calc.}}$ [g cm ⁻³]	1.926	2.156	1.794	1.686
μ [mm ⁻]	0.830	0.972	0.100	0.143
	704	328	348	0.74072
Λ _{ΜοΚα} [Α] Τ. ΓΙΖΙ	0.71073	0.71073	0.71073	0.71073
	400	100	1/3	293
θ min-max [°]	4.2, 26.0	4.2, 26.0	4.2, 27.5	4.2, 27.0
Dataset h; k; l	-9:9; -25:26; -8:9	-8:8;-8:8;-14:14	-9:10;-10:9;-12:9	-11:18; -9:4; -21:24
Reflect. coll.	9113	7459	3674	5832
Independ. refl.	2362	1985	1544	2335
R _{int}	0.031	0.037	0.036	0.047
Reflection obs.	2093	1985	1544	1518
No. parameters	206	181	248	204
R_1 (obs)	0.0254	0.0255	0.0346	0.0465
wR ₂ (all data)	0.0610	0.0595	0.0635	0.0959
S	1.05	1.07	1.04	1.01
Resd. Dens. [e Å⁻³]	-0.28, 0.27	-0.23, 0.32	-0.22, 0.23	-0.24, 0.21
Device type Solution	Oxford Xcalibur3 CCD SIR-92	Oxford Xcalibur3 CCD SIR-92	Oxford Xcalibur3 CCD SIR-92	Oxford Xcalibur3 CCD SHELXS-97
Refinement	SHELXL-97	SHELXL-97	SHELXL-97	SHELXL-97
Absorpt. corr.	multi-scan	multi-scan	multi-scan	multi-scan
CCDC	988412	988409	988405	988414

Table S2Crystallographic data of 11, 12, 14 and 15.

Compound	16	17	20	23
Formula	$C_4H_8N_{12}O_4$	$C_4H_{10}N_{14}O_3$	$C_6 H_{12} N_{16} O_4$	C ₆ H ₁₄ N ₁₈ O ₄
FW [g mol⁻¹]	288.22	302.26	372.32	402.35
Crystal system	monoclinic	triclinic	monoclinic	monoclinic
Space Group	<i>P</i> 2 ₁ / <i>n</i> (No. 14)	<i>P</i> −1 (No. 2)	C2/c (No. 15)	<i>P</i> 2 ₁ / <i>n</i> (No. 14)
Color/Habit	colorless rod	colorless plate	colorless block	colorless block
Size [mm]	0.10x0.15x0.20	0.05×0.12×0.36	0.13×0.21×0.29	0.20×0.23×0.25
a [Å] b [Å] c [Å] α [°] β [°] Υ [°] V [Å ³] Z ρ _{calc.} [g cm ⁻³]	7.5509(13) 7.8440(15) 18.562(3) 90 94.987(16) 90 1095.3(3) 4 1.748	3.7659(3) 11.0046(14) 14.3912(16) 97.056(10) 95.040(8) 98.978(9) 581.14(11) 2 1.727	14.7455(8) 11.7557(6) 10.6941(6) 90 129.904(5) 90 1422.05(17) 4 1.739	7.0135(7) 31.347(2) 7.9795(7) 90 115.793(12) 90 1579.5(3) 4 1.692
μ [mm ⁻¹]	0.152	0.146	0.146	0.142
<i>F</i> (000)	592	312	768	832
λ _{MoKα} [Å]	0.71073	0.71073	0.71073	0.71073
T [K]	293	236	100	100
θ min-max [°]	4.4, 26.0	4.3, 27.0	4.3, 26.7	4.2, 26.3
Dataset h; k; l	-9:9; -9:9; -22:14	−4:4; −14:13, −15:18	-13:18;-14:14;-13:13	-6:8;-38:39;-9:9
Reflect. coll.	5459	4048	5356	8257
Independ. refl.	2140	2518	1503	3158
R _{int}	0.036	0.027	0.031	0.034
Reflection obs.	1624	1735	1503	3158
No. parameters	213	230	147	309
<i>R</i> ₁ (obs)	0.0386	0.0446	0.0366	0.0374
wR ₂ (all data)	0.1018	0.0970	0.0876	0.0874
S	1.03	0.98	1.06	1.02
Resd. Dens. [e Å⁻³]	-0.22, 0.29	-0.24, 0.22	-0.22, 0.33	-0.22, 0.28
Device type Solution	Oxford Xcalibur3 CCD SIR-92	Oxford Xcalibur3 CCD SIR-92	Oxford Xcalibur3 CCD SHELXS-97	Oxford Xcalibur3 CCD SIR-92
Refinement	SHELXL-97	SHELXL-97	SHELXL-97	SHELXL-97
Absorpt. corr.	multi-scan	multi-scan	multi-scan	multi-scan
CCDC	988404	988413	988410	988411

Table S3Crystallographic data of 16, 17, 20 and 23.

2 Computations

2.1 Heat of Formation

All calculations were carried out using the Gaussian G09 program package^[S8]. The enthalpies (H) and free energies (G) were calculated using the complete basis set (CBS) method of Petersson and coworkers in order to obtain very accurate energies. The CBS models use the known asymptotic convergence of pair natural orbital expressions to extrapolate from calculations using a finite basis set to the estimated CBS limit. CBS-4 begins with an HF/3-21G(d) geometry optimization; the zero point energy is computed at the same level. It then uses a large basis set SCF calculation as a base energy, and an MP2/6-31+G calculation with a CBS extrapolation to correct the energy through second order. An MP4(SDQ)/6-31+ (d,p) calculation is used to approximate higher order contributions. In this study, we applied the modified CBS-4M method (**M** referring to the use of Minimal Population localization) which is a re-parametrized version of the original CBS-4 method and also includes some additional empirical corrections^[S9,S10].

The calculated gas phase enthalpies of formation $\Delta_{\rm f} H^{\circ}(g)$ were converted into the solid state enthalpies of formation ($\Delta H_{\rm m}(s)$) by (i) for neutrals: subtraction of sublimation enthalpy, calculated by the "Troutons' rule" (ΔH_{sub} [kJ mol] = 188·T_m[K]) ^[S11] (ii) for ionics: using the Jenkins and Glasser equations^[S12] based on the molecular volumes V_M (taken from X-ray structures) in order to calculate the lattice energies (ΔE_L) and enthalpies (ΔH_L).

$$\Delta_{\rm f} H^{\circ}_{(\rm g, M, 298)} = H_{\rm (Molecule, 298)} - \sum H^{\circ}_{(\rm Atoms, 298)} + \sum \Delta_{\rm f} H^{\circ}_{(\rm Atoms, 298)}$$
(1)

Lastly, the molar standard enthalpies of formation ($\Delta_{\rm f}H_{\rm m}$) were used to calculate the molar solid state energies of formation ($\Delta U_{\rm m}$) according to equation (2).

$$\Delta U_{\rm m} = \Delta H_{\rm m} - \Delta n RT (2)$$

(Δ n being the change of moles of gaseous components)

Μ	<i>–Н</i> ²⁹⁸ / а.u.	Δ _f H°(g,M) / kJ mol⁻	V _M /	Δ <i>E_L</i> , Δ <i>H</i> _L (15–17 , 20 , 23);	Δn
		1	nm³	∆ <i>H_{sub}</i> (3 , 4) / kJ mol ⁻¹	
3	709.121081	238.8		88.6	7.5
4	784.204956	244.5		85.2	8
BOTFAZ	924.24619	720.7			
dianion					
BOTFOX	999.336611	709.6			
dianion					
NH_4^+	56.796608	645.8			
NH₄O⁺	131.863249	687.2			
$N_2H_5^+$	112.030523	774.1			
G⁺	205.453192	571.9			
AG⁺	260.701802	671.6			
15		1992.4	0.2681	1359.3, 1366.7	11.5
16		1981.2	0.2738	1348.6, 1359.5	12
17		2269.0	0.2933	1314.0, 1321.4	13.5
20		1853.4	0.366	1207.6, 1215.1	16
23		2052.8	0.4067	1160.0, 1167.4	18

Table S4. CBS-4M calculation results, molecular volumes taken from X-ray solution and calculated lattice enthalpy.

2.2 Detonation Parameters

The calculation of the detonation parameters was performed with the program package EXPLO5 (version 5.05)^[S13]. The program is based on the chemical equilibrium, steady-state model of detonation. It uses the Becker–Kistiakowsky–Wilson's equation of state (BKW EOS) for gaseous detonation products and Cowan–Fickett's equation of state for solid carbon. The calculation of the equilibrium composition of the detonation products is done by applying modified White, Johnson and Dantzig's free energy minimization technique. The program is designed to enable the calculation of detonation parameters at the CJ point. The BKW equation in the following form was used with the BKWN set of parameters (α , β , κ , θ) as stated below the equations and X_i being the mol fraction of *i*-th gaseous product, k_i is the molar covolume of the *i*-th gaseous product:^[S14]

 $pV/RT = 1 + xe^{\beta x}$ $x = (\kappa \sum X_i k_i)/[V(T+\theta)]^a$

 $\alpha = 0.5, \beta = 0.176, \kappa = 14.71, \theta = 6620.$

3 Experimental Procedures

Raman spectra were recorded with a Bruker MultiRAM FT-Raman instrument fitted with a liquid-nitrogen-cooled germanium detector and a Nd:YAG laser (λ = 1064 nm), infrared spectra were measured with a Perkin-Elmer Spectrum BX-FTIR spectrometer equipped with a Smiths DuraSampIIR II ATR device. All spectra were recorded at ambient temperature; the samples were neat solids. NMR spectra were recorded with a JEOL Eclipse 400 ECX instrument, all samples were measured at 25 °C. Mass spectrometric data were obtained with a JEOL MStation JMS 700 spectrometer (DEI⁺ / FAB^{+/-}). C/H/N analysis was carried out by the department's internal micro analytical laboratory on a *Elementar Vario el* by pyrolysis of the sample and subsequent analysis of the formed gases. Differential Scanning Calorimetry (DSC) was performed on a LINSEIS DSC PT10 with about 1 mg substance in a perforated aluminum vessel and a heating rate of 5 K min⁻¹ and a nitrogen steam of 5 L h⁻¹. Melting points were determined in the same way. The sensitivities of the compounds were determined according to the BAM (German: Bundesanstalt für Materialforschung und Prüfung) standard for friction and impact^[S15]. The impact sensitivities were tested according to STANAG 4489 modified instruction using a BAM drophammer. The friction sensitivities were tested according to STANAG 4487 modified instructions using a BAM friction tester. The tested compounds were classified from the results by the "UN Recommendations on the Transport of Dangerous Goods". Additionally all compounds were tested for sensitivity towards electrical discharge using an Electric Spark Tester ESD 2010 EN^[S16].

4

References

- [S1] CrysAlisPro, Oxford Diffraction Ltd., version 171.33.41, 2009.
- [S2] SIR-92, A program for crystal structure solution: A. Altomare, G. Cascarano,
 C. Giacovazzo, A. Guagliardi, J. Appl. Crystallogr. 1993, 26, 343.
- [S3] a) A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, M. C. Burla, G. Polidori, M. Camalli, R. Spagna, *SIR97*, **1997**; b) A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, *J. Appl. Crystallogr.* **1999**, *32*, 115–119.
- [S4] a) G. M. Sheldrick, SHELX-97, University of Göttingen, Göttingen, Germany, **1997**; b) G. M. Sheldrick, Acta Crystallogr., Sect. A **2008**, 64, 112–122.
- [S5] A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, The Netherlands, 1999.
- [S6] L.J. Farrugia, J. Appl. Cryst., **1999**, 32, 837–838.
- [S7] SCALE3 ABSPACK An Oxford Diffraction program (1.0.4, gui: 1.0.3), Oxford Diffraction Ltd., 2005.
- [S8] Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R.

Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2009**.

- [S9] (a) J. W. Ochterski, G. A. Petersson, and J. A. Montgomery Jr., A complete basis set model chemistry. V. Extensions to six or more heavy atoms, *J. Chem. Phys.* 1996, 104, 2598; (b) J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski G. A. Petersson, A complete basis set model chemistry. VII. Use of the minimum population localization method, *J. Chem. Phys.* 2000, 112, 6532.
- [S10] (a) L. A. Curtiss, K. Raghavachari, P. C. Redfern, J. A. Pople, Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation, *J. Chem. Phys.* 1997, *106*(*3*), 1063; (b) E. F. C. Byrd, B. M. Rice, Improved prediction of heats of formation of energetic materials using quantum mechanical calculations, *J. Phys. Chem.* A 2006, *110*(*3*), 1005–1013; (c) B. M. Rice, S. V. Pai, J. Hare, Predicting heats of formation of energetic materials using quantum mechanical suggi quantum mechanical calculations, *J. Phys. Chem.* A 2006, *110*(*3*), 1005–1013; (c) B. M. Rice, S. V. Pai, J. Hare, Predicting heats of formation of energetic materials using quantum mechanical calculations, *Combust. Flame* 1999, *118*(*3*), 445–458.
- [S11] M. S. Westwell, M. S.Searle, M. S.; Wales, D. J.; Williams, D. H. J. Am. Chem.
 Soc. 1995, 117, 5013; (b) Trouton, F. Philos. Mag. 1884, 18, 54.
- [S12] (a) H. D. B.Jenkins, H. K.Roobottom, J. Passmore, L. Glasser, *Inorg. Chem.* 1999, 38, 3609. (b) Jenkins, H. D. B.; Tudela, D.; Glasser, L. *Inorg. Chem.* 2002, 41, 2364.
- [S13] M. Sućeska, EXPLO5.05 program, Zagreb, Croatia, 2012.
- [S14] a) M. Sućeska, Calculation of Detonation Parameters by EXPLO5 Computer Program, *Mater. Sci. Forum* 2004, **465–466**, 325; b) M. Sućeska, Calculation of the Detonation Properties of C–H–N–O Explosives, *Propellants, Explos.,Pyrotech.* **1991**, *16*, 197; c) M. Sućeska, Evaluation of Detonation Energy from EXPLO5 Computer Code Results, *Propellants, Explos., Pyrotech.*

1999, *24*, 280; d) M. L. Hobbs, M. R. Baer, Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties *Proc. of the 10th Symp. (International) on Detonation*, ONR 33395-12, Boston, MA, July 12–16, **1993**, p. 409.

[S9] a) Reichel & Partner GmbH, http://www.reichelt-partner.de; b) Test methods according to the UN Recommendations on the Transport of Dangerous Goods, *Manual of Test and Criteria*, fourth revised edition, United Nations Publication, New York and Geneva, **2003**, ISBN 92–1-139087–7, Sales No. E.03.VIII.2; 13.4.2 Test 3 a (ii) BAM Fallhammer; c) , http://www.bam.de