Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supporting information

Three N-stablization rhodamine-based fluorescent probe for Al³⁺ via Al³⁺-promoted hydrolysis of Schiff base

Peigang Ding^a, Jinhui Wang^a, Junye Cheng^a, Yufen Zhao^{a-c}, Yong Ye^{a,c*}

 ^a Phosphorus Chemical Engineering Research Center of Henan Province, the College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, China.
 ^b Key Laboratory for Chemical biology of Fujian Province, Xiamen University, Xiamen 361005, China.

^c Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China. *Corresponding author. E-mail address: yeyong03@tsinghua.org.cn (Yong Ye).

Fig. S1. ¹H NMR spectrum of L₁ in CDCl_{3.}

Fig. S2. ¹³C NMR spectrum of L₁ in CDCl₃.

Fig. S3. HRMS of L₁.

Fig. S5. ¹³C NMR spectrum of L₂ in CDCl₃.

Fig. S8. ¹³C NMR spectrum of L₃ in CDCl₃.

compound	Φfs	compound	Φfs
L ₁	0.003	$L_1 + Al^{3+}$	0.59
L_2	0.004	$L_2 + Al^{3+}$	0.47
L ₃	0.005	$L_3 + Al^{3+}$	0.29

Fig. S10. The fluorescence quantum yield of L_1 , L_2 , L_3 , $L_1 + Al^{3+}$, $L_2 + Al^{3+}$ and $L_3 + Al^{3+}$. The fluorescence quantum yield was measured at room temperature with excitation at 495 nm (Xe lamp in the HITACHI F-4500 spectrometer) with rhodamine B ($\Phi_{fs} = 0.89$) selected as the reference.

Fig. S11. I: Fluorescence intensity (at 582 nm) of L_1 (10 μ M) in different solvent with the presence of Al³⁺ (100 μ M) (λ ex = 520 nm); I₀: Fluorescence intensity (at 582 nm) of free L_1 (10 μ M) in corresponding different solvent (λ ex = 520 nm).

Fig. S13. HR-MS of L_1 in the presence of Al^{3+} in CH_3CN/H_2O (95:5, v/v) solution.

Fig. S14. ESI-MS of L_1 in the presence of Al^{3+} .

Page 1/1

Fig.S15. IR spectra of free (upper) L_1 and (down) L_1 + Al^{3+} in CH_2Cl_2 .

Supporting information

Optimized structures and Cartesian coordinates of L5, H_2O , L6 and p-nitrobenzaldehyde

L5			
Energy= -3168.534535 a.u	J.		
С	4.98717400	-1.74620600	0.09602300
С	4.21902600	-0.93260400	0.88186700

С	3.40991000	0.10807900	0.33126600
С	3.43738600	0.23127700	-1.09160100
С	4.20483700	-0.57490600	-1.90493500
С	5.01205700	-1.59100500	-1.33324900
С	2.58527200	0.97438300	1.08395500
С	1.87707200	2.01849300	-1.01751100
С	1.81941000	1.95023700	0.40842200
С	0.99456700	2.92743800	1.04499400
Н	0.94661500	2.95097100	2.12713100
С	0.27298000	3.84260300	0.33050600
С	0.31857000	3.86765900	-1.10661900
С	1.15713700	2.92940800	-1.76043600
Н	5.59248700	-2.51335100	0.56197600
Н	4.15844600	-0.42122100	-2.97504300
Н	-0.32533800	4.57282700	0.86030200
Н	1.24757100	2.90233800	-2.83841400
0	2.67292900	1.16573100	-1.71986700
С	6.56914200	-3.52743900	-1.59299700
С	5.90956600	-2.23696400	-3.56156500
С	6.97858900	-4.27972500	-2.86562100
Н	5.97038700	-4.14280100	-0.91540100
Н	7.44368100	-3.15862200	-1.04114800
С	7.07346800	-3.16862900	-3.92216700
Н	4.97723200	-2.53966700	-4.05706500
Н	6.10815500	-1.19178000	-3.81809900
Н	7.91431000	-4.82809700	-2.73120700
Н	6.99578800	-3.54064500	-4.94676200
Ν	5.77576600	-2.39076100	-2.10119100
Н	6.19902500	-4.99902100	-3.14002700
Н	8.02415600	-2.63253000	-3.82609300
С	2.57633600	0.89976200	2.57396200
С	1.42175200	0.59359400	3.32984400
С	3.75629700	1.23492900	3.25695600
С	1.47089400	0.65211400	4.73075000
С	3.79925500	1.26711400	4.65005200
Н	4.64039600	1.49653200	2.68427000
С	2.65336900	0.97528100	5.39075900
Н	0.57125400	0.42972400	5.29457900
Н	4.72500200	1.53131500	5.15186900
Н	2.67706700	1.00433500	6.47553900
С	-1.35723800	5.71627600	-1.19892900
С	-0.34679600	4.90124100	-3.27012600
С	-2.14355700	6.25208400	-2.40200600
Н	-0.81324700	6.51747000	-0.68156600

Н	-1.99663800	5.20962500	-0.47077000
С	-1.12349900	6.19484300	-3.54899300
Н	-0.82046400	4.03107500	-3.74395400
Н	0.69244300	4.95079600	-3.60964400
Н	-2.99269300	5.59317600	-2.61484000
Н	-2.53140800	7.25745500	-2.21989000
Н	-1.58761300	6.18605000	-4.53833600
Н	-0.44608700	7.05455300	-3.49912500
Ν	-0.40316400	4.76550100	-1.80288100
С	0.11570700	0.21073700	2.73223600
0	-0.97512600	0.75526900	3.15754700
Ν	-0.12676500	-0.69600000	1.80172100
С	0.58113900	-1.79284300	1.18559800
С	-0.46601900	-2.92182200	1.10618100
Н	1.45243300	-2.12369700	1.75945200
Н	0.91346300	-1.51877000	0.17816300
Н	-0.17794600	-3.68537700	0.37805300
Н	-0.55874100	-3.39719000	2.08935300
Ν	-1.80328700	-2.35662300	0.78820000
С	-2.45169400	-2.91668200	-0.17115100
Н	-1.95281600	-3.70320100	-0.74423600
С	-3.82637400	-2.62657500	-0.60087700
С	-4.82639100	-2.18519200	0.28222400
С	-4.14900100	-2.87713200	-1.94735100
С	-6.12001400	-1.96761500	-0.17685900
Н	-4.60400400	-2.04369900	1.33295500
С	-5.43404400	-2.64409200	-2.42237800
Н	-3.38723700	-3.24469400	-2.62797000
С	-6.39918400	-2.19080200	-1.52462800
Н	-6.90402100	-1.63614800	0.49165200
Н	-5.69258400	-2.81682600	-3.45896900
Ν	-7.76568300	-1.95527400	-2.01360800
0	-7.99801400	-2.16975100	-3.20399200
0	-8.60647300	-1.55454900	-1.20795000
Al	-2.00621500	-0.56865000	1.97425800
Cl	-3.16568100	-1.46896400	3.58680400
Cl	-3.09493100	0.78512300	0.68420200
Н	4.22492300	-1.07860600	1.95564700

H₂O

Energy= -76.4161195 a.u. O 0.0000000 0.0000000 0.12071700 H 0.0000000 0.75887200 -0.48286700 H 0.00000000 -0.75887200 -0.48286700 L6

Energy= -2694.8933548 a.u.

C	4 2010(100	0 (0470000	0 (111 1200
C	4.20196100	-0.604/0900	0.64114300
C	2.94883400	-0.81688900	1.14513900
C	1.88435200	0.1145/200	0.94525900
C	2.20582600	1.27011100	0.16964600
C ĩ	3.46123000	1.50716000	-0.34820200
С	4.50553000	0.57443600	-0.12377300
С	0.56605300	-0.05076500	1.42578200
С	-0.01990700	2.07401300	0.35431700
С	-0.39708600	0.94229200	1.14043600
С	-1.74561400	0.93327600	1.61132900
Н	-2.07599600	0.11914700	2.24553400
С	-2.62933100	1.92788000	1.29670300
С	-2.23373800	3.04302900	0.47937400
С	-0.89185600	3.08902800	0.02364000
Н	4.97797500	-1.33559600	0.82979900
Н	3.61639800	2.40314300	-0.93467600
Н	-3.63723800	1.88236800	1.68927700
Н	-0.52727800	3.90315500	-0.58884600
0	1.25387300	2.20177700	-0.10956600
С	6.85480200	-0.18513100	-0.50490400
С	6.14289000	1.99930500	-1.33957600
С	7.90575200	0.36361400	-1.47824900
Н	6.51970300	-1.19142000	-0.77207400
Н	7.23161600	-0.21004000	0.52603900
С	7.66894300	1.88083400	-1.44020100
Н	5.66982400	2.01757300	-2.33067100
Н	5.82281200	2.89147700	-0.79247900
Н	8,91940700	0.07782100	-1.18642200
Н	8 06091000	2 40020300	-2 31819000
N	5 74255600	0 77965900	-0.61385500
Н	7 71934400	-0 02475800	-2 48564300
Н	8 13660600	2 31683300	-0 55041700
C	0.21884400	-1 22321300	2 28074700
C	-0 73747000	-2 19860900	1 91668300
C	0.81671600	-1 30880600	3 54816400
C C	-1 08207700	-3 20834200	2 82860900
C C	0.48195900	-2 32971100	4 43655800
ч	1 53357500	-0 54978800	3 84502600
C	-0 47100600	-3 28332600	4 07697000
с Н	-0.47100000 -1 82873000	-3 93927000	2 53813500
н	-1.02075000	-3.73727000	5 /1102600
11	0.75000500	-2.5/020100	5.41102000

Η	-0.74123100	-4.07797200	4.76523400
С	-4.54059700	3.99862700	0.53721900
С	-2.75180100	5.23319400	-0.58157300
С	-5.14196400	5.13520600	-0.29949400
Н	-4.65657700	4.18364200	1.61321800
Н	-4.98391300	3.02601700	0.30594000
С	-3.98297500	6.13494200	-0.42794500
Н	-2.56144000	4.97933700	-1.63304500
Н	-1.84356900	5.68403300	-0.16971000
Н	-5.43005500	4.75830600	-1.28714800
Н	-6.02986200	5.56277300	0.17294300
Н	-4.09525600	6.81872500	-1.27303200
Н	-3.89454500	6.73444900	0.48486500
Ν	-3.11022600	4.01737700	0.17200000
С	-1.43095600	-2.23629100	0.60341500
0	-2.70276700	-2.48565000	0.55761600
Ν	-0.92625900	-2.09713500	-0.60727100
С	0.36951200	-2.12892900	-1.24548700
С	0.15273000	-2.95748500	-2.53360800
Н	1.14900100	-2.58951700	-0.63042800
Н	0.69221900	-1.11241300	-1.50013400
Н	0.92953200	-2.75049300	-3.27392800
Н	0.17236200	-4.02378400	-2.29517000
Ν	-1.21083100	-2.66569500	-3.08608200
Al	-2.54522000	-2.61487300	-1.46389000
Cl	-3.24015900	-4.67638500	-1.66618400
Cl	-3.97586500	-1.13900300	-2.16868800
Н	-1.20713200	-1.76018500	-3.56188100
Н	-1.44541200	-3.35486300	-3.80144600
Н	2.75549500	-1.71811200	1.71501600

p-nitrobenzaldehyde Energy= -550.0806347 a.u.

С	0.91664800	1.37677300	-0.00000200
С	-0.47203700	1.28097400	0.00000100
С	-1.04505000	0.01032300	-0.00000600
С	-0.28419700	-1.16136900	-0.00001800
С	1.09973700	-1.04927200	-0.00001900
С	1.70452900	0.21767400	-0.00000900
Н	1.38984600	2.35465800	0.00000500
Н	-1.10198900	2.16110900	0.00000800
Н	-0.77563900	-2.12587100	-0.00002600
Н	1.72708600	-1.93428800	-0.00002600
Ν	-2.51246200	-0.10125400	-0.00001100

Fig. S17. HR-MS of L_1 in the presence of Fe³⁺ in CH₃CN/H₂O (95:5, v/v) solution.

Fig.S20. Fluorescence intensity (582 nm) of free chemodosimeter L_1 (10 μ M) and in the presence of 10 equiv. Al³⁺ in CH₃CN/Tris-HCl (95:5, v/v) solutions with different pH conditions.

Fig.S21. Kinetics of the fluorescence enhancement of L₁ (10 μ M) in CH3CN/H2O (95:5, v/v) solution with the presence of 10 equiv. of Al³⁺. Fluorescence intensity was recorded at 582 nm (λ ex = 520 nm, slit = 5 nm).

Fig.S22. Kinetics of the fluorescence enhancement of L₁ (10 μ M) in CH3CN/H2O (95:5, v/v) solution with the presence of 10 equiv. of Fe³⁺. Fluorescence intensity was recorded at 582 nm (λ ex = 520 nm, slit = 5 nm).

Table S1. Determination of Al³⁺ Concentrations in Water Samples.

Fig. S23. Absorbance spectra of L_2 (10 μ M) in CH₃CN/H₂O (95:5, v/v) solution with the presence of 10 equiv. of various species. Inset: the photos of L_2 with different metal ions in CH₃CN/H₂O (95:5, v/v) solution.

Fig. S24. Absorbance spectra of L_2 (10 μ M) in CH₃CN/H₂O (95:5, v/v) upon addition of different amounts of Al³⁺.

Fig. S25. Job's plots of the complexation between L_2 and Al^{3+} . Total concentration of $L_2 + Al^{3+}$ was kept constant at 100 μ M.

Fig. S26. Fluorescence intensity (at 582 nm) of L_2 upon the addition of 100 μ M Al³⁺ in the presence of 100 μ M background metal ions in CH₃CN/H₂O (95/5, v/v), λ ex = 520 nm, slit = 5 nm

Fig. S27. The fluorescence intensity (at 582 nm) of compound L_2 (10 μ M) as a function of the Al³⁺ concentration (30-50 μ M) in CH₃CN/H₂O (95/5, v/v) solution.

Fig. S28. Fluorescence intensity (at 582 nm) of L_2 (10µM) to Al³⁺ in CH₃CN/H₂O (95:5,v/v) solutions (1) Baseline: 10 µM L_2 only; (2) red line: 10 µM L_2 with 10 equiv. Al³⁺; (3) green line: 10 µM L_2 with 10 equiv. Al³⁺ and then addition of 30 equiv. F⁻; (4) blue line: 10 µM L_2 with 10 equiv. Al³⁺ and 30 equiv. F⁻ then addition of 10 equiv.Al³⁺ (λ ex = 520 nm, slit = 5 nm).

Fig. S29. Absorbance spectra of L_3 (10 μ M) in CH₃CN/H₂O (95:5, v/v) solution with the presence of 10 equiv. of various species. Inset: the photos of L_3 with different metal ions in CH₃CN/H₂O (95:5, v/v) solution.

Fig. S30. Absorbance spectra of L_3 (10 μ M) in CH₃CN/H₂O (95:5, v/v) upon addition of different amounts of Al³⁺ ions.

Fig. S31. Job's plots of the complexation between L_3 and Al^{3+} . Total concentration of $L_3 + Al^{3+}$ was kept constant at 100 μ M.

Fig. S32. Fluorescence intensity (at 582 nm) of L₃ upon the addition of 100 μ M Al³⁺ in the presence of 100 μ M background metal ions in CH₃CN/H₂O (95/5, v/v), λ ex = 520 nm, slit = 5 nm.

Fig. S33. Fluorescence intensity (at 582 nm) of L_3 (10µM) to Al³⁺ in CH₃CN/H₂O (95:5,v/v) solutions (1) Baseline: 10 µM L_3 only; (2) red line: 10 µM L_3 with 10 equiv. Al³⁺; (3) green line: 10 µM L_3 with 10 equiv. Al³⁺ and then addition of 30 equiv. F⁻; (4) blue line: 10 µM L_3 with 10 equiv. Al³⁺ and 30 equiv. F⁻ then addition of 10 equiv. Al³⁺ (λ ex = 520 nm, slit = 5 nm).

Fig. S34. The fluorescence intensity (at 582 nm) of compound L_3 (10 μ M) as a function of the Al³⁺ concentration (30-50 μ M) in CH₃CN/H₂O (95/5, v/v) solution.