Synthesis of NiCo₂O₄/Nano-ZSM-5 nanocomposite material with enhanced electrochemical properties for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan

Balwinder Kaur^a, Biswarup Satpati^b, and Rajendra Srivastava^{*a}

Supporting Information

<u>Chronoamperometry study</u>

Chronoamperometry was used to calculate the diffusion coefficient (D) and rate constant (k) for the electro-catalytic reaction (Fig. S4-7). Chronoamperograms were obtained at different concentrations of analytes at a desired potential step (250, 400, 550, and 850 mV for AA, DA, UA, and Trp, respectively) (Fig. S4-7). The plots of I verses $t^{-1/2}$ exhibited straight lines for different concentrations of analytes (Fig. S4-7, inset a). Cottrell equation (Eq. 1) was used to calculate the diffusion coefficient for various analytes investigated in this study.¹

$$I_{\rm p} = {\rm n \ F \ A \ D^{1/2} \ c/\pi^{1/2} \ t^{1/2}}$$
 (1)

Where I_p is the catalytic current of NiCo₂O₄ (30 %)/Nano-ZSM-5/GCE in the presence of analyte, F is the Faraday constant (96500 C/mole), A is the geometric surface area of the electrode (0.07 cm²), D is the diffusion coefficient (cm²/s), c is the analyte concentration (mol/cm³), and t is the time elapsed (s). The diffusion coefficients for AA, DA, UA, and Trp, were found to be 2.2×10^{-4} , 8.4×10^{-4} , 4.3×10^{-4} , and 1.4×10^{-4} cm²/s, respectively.

Chronoamperometry was also employed to calculate the rate constant (k) for electrocatalytic reaction through Eq. $2.^2$

$$I_{\rm C}/I_{\rm L} = \gamma^{1/2} \left[\pi^{1/2} \, {\rm erf} \, (\gamma^{1/2}) + {\rm exp} \, (-\gamma)/\gamma^{1/2} \right] \tag{2}$$

Where I_C is the catalytic current of NiCo₂O₄ (30 %)/Nano-ZSM-5/GCE in the presence of analyte, I_L is the limiting current in the absence of analyte and $\gamma = kC_0 t$ (C₀ is the bulk concentration of analyte) is the argument of the error function. In cases, where γ exceed 2, the error function is almost equal to 1 and the above equation can be reduced to:

$$I_{\rm C}/I_{\rm L} = \pi^{1/2} \,\gamma^{1/2} = \pi^{1/2} \,({\rm k} C_0 {\rm t})^{1/2} \tag{3}$$

Where k, C₀ and t are the catalytic rate constant (1/Ms), analyte concentration (M), and time elapsed (s), respectively. Eq. 3 can be used to calculate the rate constant of the catalytic process. Based on the slope of I_C/I_L vs. t^{1/2} plot; k can be obtained for a given analyte concentration (Fig. S4-7, inset b). From the values of the slopes, an average value for k was obtained for the oxidation of analyte. The rate constants for electro-catalytic oxidation of AA, DA, UA, and Trp were found as 7.8×10^3 , 8.3×10^3 , 3.8×10^2 , and 2.8×10^3 1/s M, respectively.

Fig. S1. XRD patterns of (a) $NiCo_2O_4$ (20 %)/Nano-ZSM-5 and (b) $NiCo_2O_4$ (40 %)/Nano-ZSM-5.

Fig. S2. SEM images of (a) NiCo₂O₄, (b) Nano-ZSM-5, and (c) NiCo₂O₄ (30 %)/Nano-ZSM-5.

Fig. S3. CVs at NiCo₂O₄ (30 %)/Nano-ZSM-5/GCE containing (a) AA (10 μ M), (b) DA (10 μ M), (c) UA (10 μ M), and (d) Trp (10 μ M) in buffer solution (pH 3.5) at different scan rates (10–600 mV/s). Inset: plot of peak currents vs. square root of scan rates.

Fig. S4. Chronoamperograms obtained at NiCo₂O₄ (30 %)/Nano-ZSM-5/GCE (i) in the absence and in the presence of (ii) 50 μ M, (iii) 80 μ M, and (iv) 100 μ M of AA in 10 mL buffer solution (pH 3.5). Inset: (a) Dependence of current on the time^{-1/2} derived from the chronoamperogram data. (b) Dependence of I_C/I_L on time^{1/2} derived from the data of chronoamperograms.

Fig. S5. Chronoamperograms obtained at NiCo₂O₄ (30 %)/Nano-ZSM-5/GCE (i) in the absence and in the presence of (ii) 50 μ M, (iii) 80 μ M, and (iv) 100 μ M of DA in 10 mL buffer solution (pH 3.5). Inset: (a) Dependence of current on the time^{-1/2} derived from the chronoamperogram data. (b) Dependence of I_C/I_L on time^{1/2} derived from the data of chronoamperograms.

Fig. S6. Chronoamperograms obtained at NiCo₂O₄ (30 %)/Nano-ZSM-5/GCE (i) in the absence and in the presence of (ii) 50 μ M, (iii) 80 μ M, and (iv) 100 μ M of UA in 10 mL buffer solution (pH 3.5). Inset: (a) Dependence of current on the time^{-1/2} derived from the chronoamperogram data. (b) Dependence of I_C/I_L on time^{1/2} derived from the data of chronoamperograms.

Fig. S7. Chronoamperograms obtained at NiCo₂O₄ (30 %)/Nano-ZSM-5/GCE (i) in the absence and in the presence of (ii) 50 μ M, (iii) 80 μ M, and (iv) 100 μ M of Trp in 10 mL buffer solution (pH 3.5). Inset: (a) Dependence of current on the time^{-1/2} derived from the chronoamperogram data. (b) Dependence of I_C/I_L on time^{1/2} derived from the data of chronoamperograms.

Fig. S8. Influence of the pH on (a) oxidation peak currents and (b) the peak potentials of AA, DA, UA, and Trp at a scan rate 20 mV/s.

Fig. S9. Comparison of DPV of quaternary mixture containing (10 μ M each) of AA, DA, UA, and Trp at various modified GCE (NiCo₂O₄ (20 %)/Nano-ZSM-5/GCE, NiCo₂O₄ (30 %)/Nano-ZSM-5/GCE, and NiCo₂O₄ (40 %)/Nano-ZSM-5/GCE in phosphate buffer solution (pH 3.5). DPV parameters were selected as: pulse amplitude: 50 mV, pulse width: 50 ms, scan rate: 20 mV/s.

Fig. S10. Comparison of DPV of quaternary mixture containing (10 μ M each) of AA, DA, UA, and Trp at different modified electrodes (NiCo₂O₄ (30 %)/Nano-ZSM-5/GCE, NiCo₂O₄/GCE, Nano-ZSM-5/GCE, ZSM-5/GCE) and bare GCE in phosphate buffer solution (pH 3.5). DPV parameters were selected as: pulse amplitude: 50 mV, pulse width: 50 ms, scan rate: 20 mV/s.

Fig. S11. The current responses at NiCo₂O₄ (30 %)/Nano-ZSM-5/GCE in phosphate buffer solution (pH 3.5) in the presence of (1) AA (10 μ M), DA (10 μ M), UA (10 μ M), and Trp (10 μ M) alone; (2) AA (10 μ M), DA (10 μ M), UA (10 μ M), Trp (10 μ M), and Na⁺ (1200 μ M); (3) AA (10 μ M), DA (10 μ M), UA (10 μ M), Trp (10 μ M), and K⁺ (1200 μ M); (4) AA (10 μ M), DA (10 μ M), DA (10 μ M), Trp (10 μ M), and Mg²⁺ (1200 μ M); (5) AA (10 μ M), DA (10 μ M), UA (10 μ M), Trp (10 μ M), and Zn²⁺ (1200 μ M); (6) AA (10 μ M), DA (10 μ M), Trp (10 μ M), Trp (10 μ M), and Zn²⁺ (1200 μ M); (6) AA (10 μ M), UA (10 μ M), Trp (10 μ M), Trp (10 μ M), and citric acid (1000 μ M).

Scheme S1. Electrochemical oxidation of AA, DA, UA, and Trp at NiCo₂O₄ (30 %)/Nano-ZSM-5/GCE.

S.No.	Modified Electrode	Analyte	Linear range	Detection limit	Sensitivity
			(µM)	(µM)	$(\mu A/\mu M cm^2)$
1.	NiCo ₂ O ₄ (30 %)/Nano-	AA	1-1200	0.8	0.7
	ZSM-5/GCE	DA	0.6-900	0.5	1.3
		UA	0.9-1000	0.7	1.0
		Trp	0.9-1000	0.7	0.6
2.	Nano-ZSM-5/GCE	AA	-	-	-
		DA	10-200	3.0	0.3
		UA	10-200	5.0	0.1
		Trp	10-200	4.0	0.2
3.	NiCo ₂ O ₄ /GCE	AA	12-400	8.0	0.2
		DA	10-200	7.0	0.3
		UA	10-200	9.0	0.2
		Trp	10-200	9.0	0.1
4.	ZSM-5/GCE	AA	-	-	-
		DA	10-200	9.0	0.2
		UA	10-200	10	0.2
		Trp	10-200	9.0	0.1

Table S1 Comparison of the electro-catalytic activity at various modified GCE in the simultaneous determination AA, DA, UA, and Trp.

Table S2 Comparison of NiCo₂O₄ (30 %)/Nano-ZSM-5/GCE with other electrodes reported in the literature for AA, DA, UA, and Trp detection.

S.No.	Modified electrode	Analyte	Linear range	Detection	Reference
			(µM)	limit	
				(µM)	
1.	GS-PTCA	AA	20-420	5.60	[3]
		DA	0.4–370	0.13	
		UA	4–540	0.92	
		Trp	0.4–140	0.06	
2.	GNPs/PImox	AA	210-1010	2.0	[4]
		DA	5-268	0.08	
		UA	6–486	0.5	
		Trp	3-34, 84-464	0.7	
3.	Fe(III)P/MWCNTs	AA	14-2500	3.00	[5]
		DA	0.7-3600	0.09	
		UA	5.8-1300	0.30	
		Trp	-	-	
4.	MWCNT-FeNAZ-CH	AA	7.77-833	1.11	[6]
		DA	7.35-833	1.05	
		UA	0.23-83.3	0.033	
		Trp	0.074-34.5	0.011	
5.	MWNTs/MGF	AA	100-6000	18.28	[7]
		DA	0.3–10	0.06	
		UA	5-100, 300-1000	0.93	
		Trp	5-30, 60-500	0.87	
6.	Fe-Meso-PANI	AA	100-300	6.5	[8]
	modified electrode	DA	100-300	9.8	
		UA	100-300	5.3	
		Trp	100-300	5.2	
7.	AgNPs/rGO/GCE	AA	10-800	9.6	[9]
		DA	10-800	5.4	
		UA	10-800	8.2	
		Trp	10-800	7.5	
8.	NiCo ₂ O ₄ (30 %)/Nano-	AA	1-1200	0.8	This work
	ZSM-5/GCE	DA	0.6-900	0.5	
		UA	0.9-1000	0.7	
		Trp	0.9-1000	0.7	

GS–PTCA: hybrid of graphene sheets (GS) and 3,4,9,10-perylenetetracarboxylic acid (PTCA); GNPs/PImox: gold nanoparticles/overoxidized-polyimidazole composite;

Fe(III)P/MWCNTs: chloro[3,7,12,17-tetramethyl-8,13-divinylporphyrin-2,18-dipropanoato(2-)] iron(III)/multi-walledcarbonnanotubes;

MWCNT-FeNAZ-CH: iron ion-doped natrolite zeolite-multiwalled carbon nanotube;

MWNTs/MGF: A multi-walled carbon nanotubes bridged mesocellular graphene foam;

Fe-Meso-PANI modified electrode: iron ion-exchanged mesoporous polyaniline;

AgNPs/rGO/GCE: Silver nanoparticles decorated reduced graphene oxide modified glassy carbon electrode

References

[1]	M. Sharp, M. Petersson and K. Edstrom, J. Electroanal. Chem., 1979, 95, 123-130.
[2]	Z. Galus, Fundamentals of Electrochemical Analysis, Ellis Horwood, New York, 1976.
[3]	W. Zhang, Y. Q. Chai, R. Yuan, S. H. Chen, J. Han and D. H. Yuan, Anal. Chim. Acta,
	2012, 756 , 7-12.
[4]	C. Wang, R. Yuan, Y. Q. Chai, S. H. Chen, F. X. Hu and M. H. Zhang, Anal. Chim. Acta,
	2012, 741 , 15-20.
[5]	C. Wang, R. Yuan, Y. Q. Chai, S. H. Chen, Y. Zhang, F. X. Hu and M. H. Zhang,
	<i>Electrochim. Acta</i> , 2012, 62 , 109-115.
[6]	M. Noroozifar, M. K. Motlagh, R. Akbari and M. B. Parizi, Biosens. Bioelectron., 2011,
	28 , 56-63.
[7]	H. Li, Y. Wang, D. Ye, J. Luo, B. Su, S. Zhang and J. Kong, <i>Talanta</i> , 2014, 127 , 255-261.
[8]	M. U. Anu Prathap and R. Srivastava, Sens. Actuators, B, 2013, 177, 239-250.
[9]	B. Kaur, T. Pandiyan, B. Satpati and R. Srivastava, <i>Colloids Surf.</i> , <i>B</i> , 2013, 111 , 97-106.