Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Support information for

Excellent fluoride removal properties of porous hollow MgO microspheres

Lian-Xiang Li^{ab}, Di Xu^{*ab}, Xiao-Qin Li^{ab}, Wen-Chao Liu^c and Yong Jia^{*de}

^aState Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,

China Institute of Water Resource and Hydropower Research, Beijing, 100038, P. R.

China

^bNational Center of Efficient Irrigation Engineering and Technology Research-Beijing, Beijing, 100048, P. R. China

^cCenter for rural drinking water safety, Ministry of Water Resources, Beijing, 100054,

P. R. China

^dNanomaterials and Environmental Detection Laboratory, Institute of Intelligent

Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei,

230031, P. R. China

^eDepartment of Pharmacy, Institute of Pharmaceutical Chemistry, Anhui University of Chinese Medicine, Hefei, 230031, P. R. China

Fig. S1. XRD pattern of the obtained precursor of MgO.

Fig. S2. SEM images of the obtained precursors synthesized with different volume ratio of EG and water. (a, b) 75:25, (c, d) 25:75.

Fig. S3. SEM images of the obtained precursor synthesized at 140 °C.

Fig. S4. SEM images of the intermediate products prepared at reaction times of 2 hours (a, b), 3 hours (c, d), 5 hours (e, f) and 7 hours (g, h).

Fig. S5. Linearized Langmuir (a) and Freundlich (b) isotherm obtained from fluoride adsorption on porous MgO microspheres.

Fig. S6. SEM (a, b) and TEM (c, d) images of the porous hollow MgO microspheres after immersion in water for 24 hours.

Fig. S7. XRD pattern of the porous hollow MgO microspheres after immersion in water for 24 hours (a), and after fluoride removal (b).

Fig. S8. SEM (a, b) and TEM (c, d) images of the porous hollow MgO microspheres after fluoride adsorption.

Fig. S9. TEM-EDS spectrum of the porous hollow MgO microspheres after fluoride adsorption.

microspheres.							
First-order kinetics				Second-order kinetics			
Equations		$\ln(\mathbf{q}_{e} - \mathbf{q}_{t}) = \ln \mathbf{q}_{e} - k_{1}t$			$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$		
Co	q _{e,exp}	k ₁	q _{e,cal}	R ²	k ₂	q _{e,cal}	R ²
(mg/L)	(mg/g)	(1/min)	(mg/g)		(g/(mg·min))	(mg/g)	
10	9.69	1.6×10 ⁻²	20.68	0.647	0.12	9.71	0.999

 Table S1. Kinetics parameters for fluoride adsorption on porous hollow MgO

 microspheres

Note: k_1 is the adsorption rate constant for pseudo-first order reaction (1/min). k_2 is the rate constant for pseudo-second order reaction (g/(mg·min)). q_e and q_t are the amounts of solute sorbed at equilibrium and at any time t (mg/g), respectively. $q_{e,exp}$ is the adsorption capacity evaluated from batch experiment, while $q_{e,cal}$ is the adsorption capacity calculated on the basis of the pseudo-first-order and pseudo-second-order equations.

	1		8 1			
	Langmuir model $\frac{C_e}{q_e} = \frac{C_e}{q_m} + \frac{1}{q_m k_L}$			Freundlich model $\ln q_e = \frac{1}{n} \ln C_e + \ln k$		
Equations						
Parameters	K _L (L/mg)	$q_m (mg/g)$	R ²	n	k	R ²
Values	0.046	123.30	0.953	2.37	12.88	0.996

Table S2. Langmuir and Freundlich adsorption isotherm parameters for fluoride on

porous h	ollow	' MgO	microsp	oheres.
----------	-------	-------	---------	---------

Note: C_e is the equilibrium concentration of fluoride (mg/L); q_e is the amount of fluoride adsorbed on per weight of adsorbent after equilibrium (mg/g); q_m represents the maximum adsorption capacity of fluoride on per weight of adsorbent (mg/g); k_L is the Langmuir constant related to the energy of adsorption (L/mg); q_m and k_L were calculated from the slope and intercept of the linear plots of C_e/q_e vs C_e . The Freundlich constant k is correlated to the relative adsorption capacity of the adsorbent (mg/g), and 1/n is the adsorption intensity.