Supporting information

for

A highly selective turn-on fluorescent sensor for fluoride and its application in

imaging of living cells

Jiun-Ting Yeh, Parthiban Venkatesan, Shu-Pao Wu*

Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan

300, Republic of China

Content:

1. Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra (300 MHz) of $\mathbf{1}$ in CDCl_{3}
2. Figure S2. ${ }^{13} \mathrm{C}$ NMR spectra (125 MHz) of $\mathbf{1}$ in CDCl_{3}.
3. Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra (300 MHz) of $\mathbf{F S}$ in CDCl_{3}.
4. Figure $\mathbf{S 4}$. ${ }^{13} \mathrm{C}$ NMR spectra (125 MHz) of $\mathbf{F S}$ in CDCl_{3}.
5. Figure S5. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of the product of $\mathbf{F S}$ react with F^{-}
6. Figure S6. FTIR spectrum of FS.
7. Figure S7. Calibration curve of chemosesor $\mathbf{F S}(10 \mu \mathrm{M})$ with F^{-}.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra (300 MHz) of $\mathbf{1}$ in CDCl_{3}.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectra $(125 \mathrm{MHz})$ of $\mathbf{1}$ in CDCl_{3}.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra $(300 \mathrm{MHz})$ of $\mathbf{F S}$ in CDCl_{3}.

Figure $\mathbf{S 4} .{ }^{13} \mathrm{C}$ NMR spectra $(125 \mathrm{MHz})$ of $\mathbf{F S}$ in CDCl_{3}.

Figure S5. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of the product of $\mathbf{F S}$ react with F^{-}

Figure S6. FTIR spectrum of FS.

Figure S7. Calibration curve of chemosesor $\mathbf{F S}(10 \mu \mathrm{M})$ with F^{-}. The excitation wavelength was 465 nm .

Linear Regression Data:
$\mathrm{Y}=\mathrm{A}+\mathrm{S} * \mathrm{X}$
$\begin{array}{lllllll}\text { Parameter } & \text { Value } & \text { Error } & \text { R }\end{array}$

A
$\begin{array}{llllll}102.52857 & 8.29516 & 0.99728 & 10.64583 & 8 & <0.0001\end{array}$
$\begin{array}{lll}\mathrm{S} & 544630.95238 & 16426.8647\end{array}$

The detection limit (DL) of F^{-}ions using chemosensor $\mathbf{F S}$ was determined from thefollowing equation:

DL $=K * S_{b} / S$
Where $\mathrm{K}=3 ; \mathrm{S}_{\mathrm{b}}$ is the standard deviation of the blank solution; S is the slope of the calibration curve. $\mathrm{DL}=3 * 0.263039 / 544630.95238=1.45 * 10^{-6} \mathrm{M}$

