Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supporting Information

Participation of Non-Aminoisobutyric Acid (Aib) Residues in the 310

Helical Conformation of Aib-Rich Foldamers: A Solid State Study

Sarah J. Pike,*[‡] Thomas Boddaert,[‡] James Raftery,[‡] Simon J. Webb^{†‡*} Jonathan Clayden,*[‡]

[‡]School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

[†]Manchester Institute of Biotechnology, University of Manchester, 131 Princess St.,

Manchester, M1 7DN, UK.

Email: <u>s.webb@manchester.ac.uk</u>, clayden@manchester.ac.uk

Contents	2
Crystallographic Details	3
General Experimental Section	6
Synthetic Details	7
Crystal data for Cbz-L-Phe-(Aib) ₄ -NH ₂	8
Table S1. Crystal data and structure refinement for Cbz-L-Phe-(Aib) ₄ -NH ₂	8
Table S2. Hydrogen bonds for Cbz-L-Phe-(Aib) ₄ -NH ₂	10
Figures S1-S12. Torsion angles	12
Figures S13-17. Intramolecular H-bonding interactions	18
Figures S18-21. Intermolecular H-bonding interactions	20
Figures S22-26. Intermolecular π - π stacking interactions	22
Crystal data Cbz-L-Phe-(Aib) ₄ -OtBu	25
Table S3. Crystal data and structure refinement for Cbz-L-Phe-(Aib) ₄ -OtBu	25
Table S4. Torsion angles for Cbz-L-Phe-(Aib) ₄ -OtBu	26
Table S5. Hydrogen bonds for Cbz-L-Phe-(Aib) ₄ -OtBu	30
Figures S27-S29. Torsion angles	30
Figure S30. Intramolecular H-bonding interactions	31
Figure S31 Intermolecular π - π stacking interactions	32
Figure S32. Packing of M and P helices	33
Crystal data N ₃ -(Aib) ₄ -GlyNH ₂	33
<i>Table S6.</i> Crystal data and structure refinement for N_3 -(Aib) ₄ -GlyNH ₂	33
<i>Table S7</i> . Torsion angles for N ₃ -(Aib) ₄ -GlyNH ₂	35
<i>Table S8.</i> Hydrogen bonds for N_3 -(Aib) ₄ -GlyNH ₂	36
Figures S33-S35. Torsion angles	37
Figure S36. Intramolecular H-bonding interactions	38

Figure S37. Packing of M and P helices	39
Crystal data Cbz-L-Phe-(Aib) ₄ -Ac ₅ c-(Aib) ₄ -GlyNH ₂	39
Table S9. Crystal data and structure refinement for	39
Cbz-L-Phe-(Aib) ₄ -Ac ₅ c-(Aib) ₄ -GlyNH ₂	
<i>Table S10</i> . Hydrogen bonds for Cbz-L-Phe-(Aib) ₄ -Ac ₅ c-(Aib) ₄ -GlyNH ₂	40
Figures S38-S43. Torsion angles	42
Figures S44 and S45. Intramolecular H-bonding interactions	44
Figures S46-47. Packing of M and P helices	45
<i>Figures S48-49.</i> Length of 3_{10} helical conformation	46
Crystal data Cbz-L-Phe-(Aib) ₄ -Ac ₆ c-(Aib) ₄ -GlyNH ₂	47
Table S11. Crystal data and structure refinement for	47
Cbz-L-Phe-(Aib) ₄ -Ac ₆ c-(Aib) ₄ -GlyNH ₂	
<i>Table S12</i> . Hydrogen bonds for Cbz-L-Phe-(Aib) ₄ -Ac ₆ c-(Aib) ₄ -GlyNH ₂	49
Figures S50-S55. Torsion angles	50
Figures S56-59 Intramolecular H-bonding interactions	53
Figure S60. Packing of M and P helices	54
<i>Figures S61-62.</i> Length of 3_{10} helical conformation	55
Crystal data Cbz-L-Phe-(Aib) ₄ -Bip-(Aib) ₄ -GlyNH ₂	56
Table S13. Crystal data and structure refinement for	56
Cbz-L-Phe-(Aib) ₄ -Bip-(Aib) ₄ -GlyNH ₂	
Table S14. Hydrogen bonds for Cbz-L-Phe-(Aib) ₄ -Bip-(Aib) ₄ -GlyNH ₂	57
Figures S63-S68. Torsion angles	59
Figures S69 and S70. Intramolecular H-bonding interactions	62
Figure S71-76. Packing of M and P helices	63

<i>Figures S77-78.</i> Length of 3_{10} helical conformation	65
Figures S79-80. Axial chirality of Bip residue	66
Appendix: ¹ H, ¹³ C NMR spectra	67
References	68

Crystallographic Details

Single crystals of 1, 2 and 4-5 suitable for X-ray diffraction analysis were grown by slow evaporation of a saturated solution of chloroform. Single crystals of 3 suitable for X-ray diffraction analysis were grown by slow evaporation of a saturated solution of methanol and di-ethyl ether. Single crystals of 6 suitable for X-ray diffraction analysis were grown by slow evaporation of a saturated solution of methanol. The data was collected, reduced and solved and refined under APEX2 program suite on a Bruker Prospector with Cu radiation for Cbz-Phe-(Aib)₄-O'Bu. For N₃-(Aib)₄-GlyNH₂, Saint crashed during data reduction but data reduced successfully with CrysAlisPro. For Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH₂, Cbz-L-Phe-(Aib)₄-NH₂, Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂, Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂ data was collected, reduced and solved and refined under APEX1 program suite on a Bruker SMART AXS with Mo radiation. For Cbz-Phe-(Aib)₄-O'Bu, Prospector with Cu radiation: Cbz-Phe-(Aib)₄-O'Bu. The actual component programs for reduction, solution and refinement are Saint, SHELXS-97 and SHELXL-97. The following restraints/constraints were used: EADP and SADI for Cbz-Phe-(Aib)₄-O'Bu, FLAT SADI ISOR and SADI for Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂, SADI and ISOR for Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂, DANG and DFIX for Cbz-L-Phe-(Aib)₄-NH₂, DFIX for Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH₂ and non for N₃-(Aib)₄-GlyNH₂. Disorder was found in the following structures; benzyl group and chloroform molecules of Cbz-Phe-(Aib)₄-O'Bu, phenyl groups, a water molecule and a Me₂C residue in Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂ but no disorder was found for N₃-(Aib)₄-GlyNH₂, Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂, Cbz-L-Phe-(Aib)₄-NH₂or Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH₂. For Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂, the structure was solved by the direct methods and there are two molecules in the asymmetric unit together with some water molecules, some at partial occupancy. All non-H atoms were refined anisotropically with restraints. Most H atoms were included in calculated positions; those bonded to the water molecules could not be located.

General Experimental Section

Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker Ultrashield 400 or 500 MHz spectrometer. ¹H and ¹³C spectra were referenced relative to the solvent residual peaks and chemical shifts (δ) reported in ppm downfield of tetramethylsilane (CDCl₃ δ H: 7.26 ppm, δ C: 77.0 ppm). Coupling constants (J) are reported in Hertz and rounded to 0.1 Hz. Splitting patterns are abbreviated as follows: singlet (s), doublet (d), multiplet (m), septet (spt), broad (br) or some combination of these.

Low and high resolution mass spectra were recorded by staff at the University of Manchester. Electrospray (ES) spectra were recorded on a Waters Platform II and high resolution mass spectra (HRMS) were recorded on a Thermo Finnigan MAT95XP and are accurate to ± 0.001 Da. Infrared spectra were recorded on a Thermo Scientific Nicolet iS5 FTIR Spectrometer. Melting points were determined on a GallenKamp apparatus and are uncorrected. Thin layer chromatography (TLC) was performed using commercially available pre-coated plates (Macherey-Nagel alugram. Sil G/UV254) and visualized with UV light at 254 nm; phosphomolybdic acid dip was used to reveal the products. Flash column chromatography was carried out using Fluorochem Davisil 40-63u 60Å.

All reactions were conducted under a nitrogen atmosphere in oven-dried glassware unless stated otherwise. Dichloromethane was obtained by distillation over calcium hydride under a nitrogen atmosphere. All other solvents and commercially available reagents were used as received.

Procedures for the synthesis of $H_2N-Aib_4O^t-Bu$,¹ Cbz-L-Phe-Aib₄O^t-Bu² and Cbz-D-Phe-Aib₄O^t-Bu² have been reported previously. The following abbreviations have been used; Aib = aminoisobutyric acid, Cbz = benzyloxycarbonyl, Phe = phenylalanine, 'Bu = *tert*-butyl.

Synthetic Details

CbzPheAib₄O^tBu

$$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

A solution of Cbz-L-PheAib₄O'Bu (0.050 g, 0.072 mmol) in CH₂Cl₂ (3 mL) was added Cbz-D-PheAib₄O'Bu (0.050 g, 0.072 mmol) and the reaction mixture was left stirring at ambient temperature for 5 mins. After this time, the excess solvent was removed under reduced pressure and to give a white solid. **m.p.** 248-250 °C; ¹H NMR (500MHz, CDCl₃); $\delta = 7.38 - 1000$ 7.27 (m, 9H, ArH + NH), 7.18 (d, 2H, J = 6.8 Hz, ArH), 7.10 (s, br, 1H, NH), 6.92 (s, br, 1H, NH), 6.13 (s, br, 1H, NH), 5.37 (d, 1H, J = 12.0 Hz, NH), 5.10 (d, A of AB, 1H, J = 12.2 Hz, CH of CH₂), 5.07 (d, B of AB, 1H, J = 12.2 Hz, CH of CH₂), 4.11 - 4.09 (m, 1H, CH), 3.13(dd, 1H, J = 14.0 Hz, ${}^{4}J$ = 6.4 Hz, CH of CH₂), 2.99 (dd, 1H, J = 14.0 Hz, ${}^{4}J$ = 8.2 Hz, CH of CH_2), 1.51 (6H, s, 2 × CH_3 , Aib), 1.47 (6H, s, 2 × CH_3 , Aib), 1.43 (9H, s, 3 × CH_3 , O'Bu), 1.41 (6H, s, 2 × CH₃, Aib), 1.40 (6H, s, 2 × CH₃, Aib), 1.34 (6H, s, 2 × CH₃, Aib), 1.27 (6H, s, 2 × CH₃, Aib), ¹³C NMR (125 MHz, CDCl₃); 174.1 (CO), 173.7 (CO), 173.2 (CO), 173.0 (CO), 171.0 (CO), 170.8 (CO), 135.8 (Ar), 135.7 (Ar), 129.2 (Ar), 129.0 (Ar), 128.7 (2C, Ar), 128.6 (Ar), 128.2 (2C, Ar), 127.5 (Ar), 79.9 (C), 67.6 (CH₂), 57.5 (CH₂), 57.0 (C), 56.9 (C), 56.7 (C), 56.1 (C), 36.7 (CH₂), 27.9 (CH₃,O'Bu), 25.6 (CH₃, Aib), 25.4 (CH₃, Aib), 25.34 (CH₃, Aib), 25.30 (CH₃, Aib), 25.0 (CH₃, Aib), 24.8 (CH₃, Aib), 24.7 (CH₃, Aib), 24.6 (CH₃, Aib); **IR** 3324, 2983, 2933, 1707, 1665, 1526, 1467, 1455, 1384, 1364, 1258, 1148, 1028; **MS** (ES⁺, MeOH): m/z = 695 ([M+H]⁺, 12%), 719 ([M+Na]⁺, 8%).

Crystal Structure Data for Cbz-L-Phe-(Aib)₄-NH₂

Table S1. Crystal data and structure refinement for $Cbz-L-Phe-(Aib)_4-NH_2$

Identification code	Cbz-L-Phe-(Aib) ₄ -	-NH ₂
Empirical formula	C33 H46 N6 O7	
Formula weight	638.76	
Temperature	100(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Triclinic, Pl	
Unit cell dimensions	a = 11.357(2) b = 16.271(3) c = 18.895(4)	alpha = 80.846(4) beta = 87.004(4) gamma = 89.866(4)
Volume	3442.2(12) A^3	
Z, Calculated density	4, 1.233 Mg/m^3	
Absorption coefficient	0.088 mm^-1	
F(000)	1368	
Crystal size	0.50 x 0.40 x 0.	40 mm
Theta range for data collection	1.54 to 26.40 de	g.
Limiting indices	-14<=h<=14, -20<	=k<=20, -22<=1<=23
Reflections collected / unique	27363 / 13809 [R	(int) = 0.0658]
Completeness to theta = 26.40	97.8 %	
Absorption correction	None	
Refinement method	Full-matrix leas	t-squares on F^2

Data / restraints / parameters 13809 / 41 / 1773
Goodness-of-fit on F^2 0.872
Final R indices [I>2sigma(I)] R1 = 0.0513, wR2 = 0.0967
R indices (all data) R1 = 0.0952, wR2 = 0.1082
Largest diff. peak and hole 0.294 and -0.180 e.A^-3

Table S2. Hydrogen bonds for Cbz-L-Phe-(Aib)₄-NH₂ [A and deg.].

D-HA	d(D-H) d(HA) d(DA) <(DHA)
N(1)-H(1N)O(6)#1	0.88(2) 1.99(3) 2.737(5) 141(4)
N(3)-H(3N)O(2)	0.87(2) 2.27(3) 3.075(6) 153(5)
N(4)-H(4N)O(3)	0.88(2) 2.16(2) 3.013(6) 166(5)
N(5)-H(5N)O(4)	0.88(2) 2.26(3) 3.108(6) 160(5)
N(6)-H(6L)O(14)#2	2 0.822(19) 1.86(2) 2.681(5) 173(4)
N(7)-H(7N)O(13)#	3 0.87(2) 1.91(2) 2.762(5) 164(5)
N(9)-H(9N)O(9)	0.86(2) 2.31(2) 3.153(6) 168(5)
N(10)-H(10N)O(10	0.85(2) 2.18(3) 2.961(5) 152(5)
N(11)-H(11N)N(10	0.85(2) 2.28(5) 2.793(7) 118(4)
N(11)-H(11N)O(11) 0.85(2) 2.31(3) 3.110(6) 155(5)
N(12)-H(12L)O(14) 0.779(19) 1.78(5) 2.260(5) 119(5)
N(12)-H(12M)O(7)	#4 0.808(18) 1.86(2) 2.645(6) 165(4)
N(13)-H(13N)O(20)#1 0.847(19) 1.95(2) 2.773(5) 163(5)
N(15)-H(15N)O(16	0.87(2) 2.40(3) 3.123(6) 141(4)
N(16)-H(16N)O(17	0.87(2) 2.20(3) 2.952(6) 144(4)
N(16)-H(16N)N(15	0.87(2) 2.32(5) 2.763(6) 111(4)
N(17)-H(17N)O(18	0.889(19) 2.19(3) 3.029(5) 157(4)
N(18)-H(18L)O(11)#3 0.821(19) 1.90(2) 2.708(5) 168(4)
N(19)-H(19N)O(27)#3 0.86(2) 1.94(3) 2.736(5) 155(5)

N(20)-H(20N)O(28)#3	0.866(19) 2.52(4) 3.177(5) 133(4)
N(21)-H(21N)O(23)	0.87(2) 2.12(2) 2.996(6) 179(5)
N(22)-H(22N)O(24)	0.865(19) 2.14(2) 3.002(5) 173(4)
N(23)-H(23N)O(25)	0.89(2) 2.13(2) 2.996(5) 163(4)
N(24)-H(24L)O(4)#5	0.807(19) 1.91(3) 2.679(5) 159(4)
N(24)-H(24M)O(27)	0.842(17) 2.62(3) 3.011(5) 110(2)

Torsion Angles for Cbz-L-Phe-(Aib)₄-NH₂.

Figure S1. Highlighting the ω torsion angles for one molecule in the unit cell of Cbz-L-Phe-(Aib)₄-NH₂.

Figure S2. Highlighting the ω torsion angles for one molecule in the unit cell of Cbz-L-Phe-(Aib)₄-NH₂

Figure S3. Highlighting the ω torsion angles for one molecule in the unit cell of Cbz-L-Phe-(Aib)₄-NH₂.

Figure S4. Highlighting the ω torsion angles for one molecule in the unit cell of Cbz-L-Phe-(Aib)₄-NH₂.

Figure S5. Highlighting the ϕ torsion angles for one molecule in the unit cell of Cbz-L-Phe-(Aib)₄-NH₂.

Figure S6. Highlighting the ϕ torsion angles for one molecule in the unit cell of Cbz-L-Phe-(Aib)₄-NH₂.

Figure S7. Highlighting the ϕ torsion angles for one molecule in the unit cell of Cbz-L-Phe-(Aib)₄-NH₂.

Figure S8. Highlighting the ϕ torsion angles for one molecule in the unit cell of Cbz-L-Phe-(Aib)₄-NH₂.

Figure S9. Highlighting the ψ torsion angles for one molecule in the unit cell of Cbz-L-Phe-(Aib)₄-NH₂.

Figure S10. Highlighting the ψ torsion angles for one molecule in the unit cell of Cbz-L-Phe-(Aib)₄-NH₂.

Figure S11. Highlighting the ψ torsion angles for one molecule in the unit cell of Cbz-L-Phe-(Aib)₄-NH₂.

Figure S12. Highlighting the ψ torsion angles for one molecule in the unit cell of Cbz-L-Phe-(Aib)₄-NH₂.

Intramolecular Hydrogen-bonding interactions in Cbz-L-Phe-(Aib)₄-NH₂.

Figure S13. Intramolecular hydrogen bonding interactions present in one molecule of Cbz-L-Phe-(Aib)₄-NH₂ found in the unit cell.

Figure S14. Intramolecular hydrogen bonding interactions present in one molecule of Cbz-L-Phe-(Aib)₄-NH₂ found in the unit cell.

Figure S15. Intramolecular hydrogen bonding interactions present in one molecule of Cbz-L-Phe-(Aib)₄-NH₂ found in the unit cell.

Figure S16. Intramolecular hydrogen bonding interactions present in one molecule of Cbz-L-Phe-(Aib)₄-NH₂ found in the unit cell.

Figure S17 Intramolecular hydrogen bonding interaction present in one molecules of Cbz-L-Phe- $(Aib)_4$ -NH₂ involving the C-terminal AibNH₂ residue which does not conform to the expected 3₁₀ hydrogen-bonding pattern.

Intermolecular Hydrogen-bonding interactions in Cbz-L-Phe-(Aib)4-NH2.

Figure S18. Intermolecular hydrogen bonding interactions present between two molecules of Cbz-L-Phe-(Aib)₄-NH₂ involving the C-terminal AibNH₂ residue.

Figure S19. Intermolecular hydrogen bonding interactions present between two molecules of Cbz-L-Phe-(Aib)₄-NH₂ involving the C-terminal AibNH₂ residue.

Figure S20. Intermolecular hydrogen bonding interactions present between two molecules of Cbz-L-Phe-(Aib)₄-NH₂ involving the C-terminal AibNH₂ residue.

Figure S21. Intermolecular hydrogen bonding interactions present between two molecules of Cbz-L-Phe-(Aib)₄-NH₂ involving the C-terminal AibNH₂ residue.

Intermolecular π - π stacking interactions in Cbz-L-Phe-(Aib)₄-NH₂.

Figure S22. Intermolecular π - π stacking interactions present between two adjacent molecules of Cbz-L-Phe-(Aib)₄-NH₂ of opposing screw-sense.

Figure S23. Intermolecular π - π stacking interactions present between two adjacent molecules of Cbz-L-Phe-(Aib)₄-NH₂ of opposing screw-sense.

Figure S24. Intermolecular π - π stacking interactions present between two adjacent molecules of Cbz-L-Phe-(Aib)₄-NH₂ of opposing screw-sense.

Figure S25. Intermolecular π - π stacking interactions present between two adjacent molecules of Cbz-L-Phe-(Aib)₄-NH₂ of opposing screw-sense.

Figure S26. Intermolecular π - π stacking interactions present between two adjacent molecules of Cbz-L-Phe-(Aib)₄-NH₂ of opposing screw-sense.

Crystal Structure Data for Cbz-Phe-(Aib)₄-OtBu

Table S3. Crystal data and structure refine	ment for Cbz-Phe-(Aib) ₄ -O	^t Bu.
Identification code	Cbz-Phe(Aib) ₄ -O'Bu.	
Empirical formula	C39 H55 Cl6 N5 O8	
Formula weight	934.58	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 11.3070(4) Å	α= 70.683(2)°.
	b = 13.8002(4) Å	β= 73.734(2)°.
	c = 17.3410(5) Å	$\gamma = 71.237(2)^{\circ}$.
Volume	2371.72(13) Å ³	
Z	2	
Density (calculated)	1.309 Mg/m ³	
Absorption coefficient	3.734 mm ⁻¹	
F(000)	980	
Crystal size	0.29 x 0.17 x 0.08 mm ³	
Theta range for data collection	2.75 to 69.95°.	
Index ranges	-13<=h<=12, -16<=k<=16	6, - 21<=l<=20
Reflections collected	18687	
Independent reflections	8514 [R(int) = 0.0380]	
Completeness to theta = 67.00°	95.7 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7544 and 0.497525	
Refinement method	Full-matrix least-squares on F ²	

Data / restraints / parameters	8514 / 10 / 554
Goodness-of-fit on F ²	1.070
Final R indices [I>2sigma(I)]	R1 = 0.0659, wR2 = 0.1562
R indices (all data)	R1 = 0.0815, wR2 = 0.1683
Largest diff. peak and hole	1.111 and -0.835 e.Å ⁻³

Table S4. Torsion angles [°] for Cbz-Phe-(Aib)₄-O'Bu.

C(6)-C(1)-C(2)-C(3)	0.1(5)
C(7)-C(1)-C(2)-C(3)	-178.5(3)
C(1)-C(2)-C(3)-C(4)	-0.6(6)
C(2)-C(3)-C(4)-C(5)	0.9(6)
C(3)-C(4)-C(5)-C(6)	-0.7(6)
C(4)-C(5)-C(6)-C(1)	0.2(6)
C(2)-C(1)-C(6)-C(5)	0.1(5)
C(7)-C(1)-C(6)-C(5)	178.7(3)
C(2)-C(1)-C(7)-O(1)	-106.5(4)
C(6)-C(1)-C(7)-O(1)	75.0(4)
N(1)-C(9)-C(10)-C(11)	-75.5(4)
C(17)-C(9)-C(10)-C(11)	165.5(3)
C(9)-C(10)-C(11)-C(12)	97.2(4)

C(9)-C(10)-C(11)-C(16)	-80.5(4)
C(16)-C(11)-C(12)-C(13)	0.0
C(10)-C(11)-C(12)-C(13)	-177.7(4)
C(11)-C(12)-C(13)-C(14)	0.0
C(12)-C(13)-C(14)-C(15)	0.0
C(13)-C(14)-C(15)-C(16)	0.0
C(14)-C(15)-C(16)-C(11)	0.0
C(12)-C(11)-C(16)-C(15)	0.0
C(10)-C(11)-C(16)-C(15)	177.7(4)
C(17)-C(9S)-C(10S)-C(11S)	-173.7(8)
N(1)-C(9S)-C(10S)-C(11S)	72.0(10)
C(9S)-C(10S)-C(11S)-C(12S)	-5.6(12)
C(9S)-C(10S)-C(11S)-C(16S)	179.4(8)
C(16S)-C(11S)-C(12S)-C(13S)	0.0
C(10S)-C(11S)-C(12S)-C(13S)	-174.9(11)
C(11S)-C(12S)-C(13S)-C(14S)	0.0
C(12S)-C(13S)-C(14S)-C(15S)	0.0
C(13S)-C(14S)-C(15S)-C(16S)	0.0
C(14S)-C(15S)-C(16S)-C(11S)	0.0
C(12S)-C(11S)-C(16S)-C(15S)	0.0
C(10S)-C(11S)-C(16S)-C(15S)	175.2(10)
C(10S)-C(9S)-C(17)-O(3)	27.1(10)
N(1)-C(9S)-C(17)-O(3)	140.1(5)
C(10S)-C(9S)-C(17)-N(2)	-170.6(6)
N(1)-C(9S)-C(17)-N(2)	-57.6(8)
C(10S)-C(9S)-C(17)-C(9)	-48.5(10)
N(1)-C(9S)-C(17)-C(9)	64.6(10)
N(1)-C(9)-C(17)-O(3)	161.3(3)
C(10)-C(9)-C(17)-O(3)	-80.5(4)
N(1)-C(9)-C(17)-N(2)	-12.7(5)
C(10)-C(9)-C(17)-N(2)	105.6(4)
N(1)-C(9)-C(17)-C(9S)	-80.0(11)
C(10)-C(9)-C(17)-C(9S)	38.2(10)
N(2)-C(18)-C(21)-O(4)	155.8(3)
C(20)-C(18)-C(21)-O(4)	33.1(4)
C(19)-C(18)-C(21)-O(4)	-87.7(3)
N(2)-C(18)-C(21)-N(3)	-25.2(4)
C(20)-C(18)-C(21)-N(3)	-147.9(3)

91.3(3)
150.1(3)
26.5(4)
-93.7(3)
-33.7(3)
-157.2(2)
82.5(3)
160.8(3)
37.5(4)
-82.0(3)
-25.3(4)
-148.6(3)
91.9(3)
-137.3(3)
-15.0(4)
105.8(3)
48.0(3)
170.3(2)
-69.0(3)
8.3(5)
-172.6(3)
-13.1(8)
166.0(6)
170.8(3)
-71.9(4)
-50.3(10)
67.0(11)
-24.8(10)
83.7(8)
-78.0(11)
30.6(8)
-1.4(5)
-164.5(5)
172.2(3)
67.4(4)
-171.9(3)
-54.9(4)
-5.0(4)

C(18)-C(21)-N(3)-C(22)	176.0(3)
C(24)-C(22)-N(3)-C(21)	70.3(3)
C(23)-C(22)-N(3)-C(21)	-168.3(3)
C(25)-C(22)-N(3)-C(21)	-52.5(3)
O(5)-C(25)-N(4)-C(26)	1.2(4)
C(22)-C(25)-N(4)-C(26)	-175.0(2)
C(28)-C(26)-N(4)-C(25)	61.5(3)
C(27)-C(26)-N(4)-C(25)	-177.3(2)
C(29)-C(26)-N(4)-C(25)	-61.4(3)
O(6)-C(29)-N(5)-C(30)	-8.5(4)
C(26)-C(29)-N(5)-C(30)	177.6(2)
C(32)-C(30)-N(5)-C(29)	-72.9(3)
C(33)-C(30)-N(5)-C(29)	49.7(4)
C(31)-C(30)-N(5)-C(29)	166.7(3)
O(2)-C(8)-O(1)-C(7)	6.0(5)
N(1)-C(8)-O(1)-C(7)	-173.1(3)
C(1)-C(7)-O(1)-C(8)	78.6(4)
O(7)-C(33)-O(8)-C(34)	4.3(5)
C(30)-C(33)-O(8)-C(34)	178.9(2)
C(35)-C(34)-O(8)-C(33)	175.7(3)
C(36)-C(34)-O(8)-C(33)	57.3(4)
C(37)-C(34)-O(8)-C(33)	-66.4(4)

– D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
– N(5)-H(5A)O(4)	0.88	2.24	3.058(3)	153.9	
N(1)-H(1)O(6)#1	0.88	1.95	2.801(4)	163.4	
N(3)-H(3A)O(2)	0.88	2.21	3.054(3)	161.7	
N(4)-H(4A)O(3)	0.88	2.04	2.889(3)	160.6	

Table S5. Hydrogen bonds for Cbz-Phe-(Aib)₄-O'Bu [Å and °].

Torsion Angles for Cbz-Phe-(Aib)₄-O'Bu

Figure S27. Highlighting the ω torsion angles for one molecule in the unit cell for Cbz-Phe-(Aib)₄-O'Bu.

Figure S28. Highlighting the ϕ torsion angles for one molecule in the unit cell for Cbz-Phe-(Aib)₄-

Figure S29. Highlighting the ψ torsion angles for one molecule in the unit cell for Cbz-Phe-(Aib)₄-O'Bu.

Intramolecular Hydrogen-bonding interactions in Cbz-Phe-(Aib)₄-O'Bu

Figure S30. Intramolecular hydrogen bonding interactions present in Cbz-Phe-(Aib)₄-O'Bu. Intermolecular π - π stacking interactions in Cbz-L-Phe-(Aib)₄-O'Bu.

Figure S31. Intermolecular π - π stacking interactions present in Cbz-Phe-(Aib)₄-O'Bu between peptides of opposite screw-sense.

Packing of *M* and *P* Helices in Cbz-L-Phe-(Aib)₄-O'Bu.

Figure S32. Arrangement of M and P helices in the solid-state for Cbz-Phe-(Aib)₄-O'Bu.

Crystal Structure Data for N₃-(Aib)₄-GlyNH₂

Table S6. Crystal data and structure refinement for N_3 -(Aib)₄-GlyNH₂

Identification code	N_3 -(Aib) ₄ -GlyNH ₂
Empirical formula	C19 H36 N8 O6
Formula weight	472.56

Temperature	100(2) K
Wavelength	1.5418 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 8.5578(6) alpha = 71.838(7) b = 10.4202(9) beta = 82.558(6) c = 15.1810(11) gamma = 74.669(7)
Volume	1238.90(17) A^3
Z, Calculated density	2, 1.267 Mg/m^3
Absorption coefficient	0.797 mm^-1
F(000)	508
Crystal size	0.21 x 0.19 x 0.17 mm
Theta range for data collection	3.0651 to 74.0840 deg.
Limiting indices	-10<=h<=9, -12<=k<=12, -18<=1<=16
Reflections collected / unique	9925 / 4630 [R(int) = 0.0290]
Completeness to theta = 66.60	96.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.58868
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4630 / 0 / 333
Goodness-of-fit on F^2	1.056
Final R indices [I>2sigma(I)]	R1 = 0.0435, $wR2 = 0.1191$
R indices (all data)	R1 = 0.0481, $wR2 = 0.1240$
Extinction coefficient	0.0041(6)
Largest diff. peak and hole	0.867 and -0.411 e.A^-3

Table S7. Torsion angles [deg] for N_3 -(Aib)₄-GlyNH₂

N(3) - C(1) - C(4) - O(1)C(2) - C(1) - C(4) - O(1)C(3) - C(1) - C(4) - O(1)N(3) - C(1) - C(4) - N(4)C(2)-C(1)-C(4)-N(4) C(3) - C(1) - C(4) - N(4)N(4)-C(5)-C(8)-O(2) C(7)-C(5)-C(8)-O(2) C(6)-C(5)-C(8)-O(2) N(4) - C(5) - C(8) - N(5)C(7) - C(5) - C(8) - N(5)C(6) - C(5) - C(8) - N(5)N(5) - C(9) - C(12) - O(3)C(11) - C(9) - C(12) - O(3)C(10) - C(9) - C(12) - O(3)N(5) - C(9) - C(12) - N(6)C(11) - C(9) - C(12) - N(6)C(10)-C(9)-C(12)-N(6) N(6)-C(13)-C(16)-O(4) C(14)-C(13)-C(16)-O(4) C(15)-C(13)-C(16)-O(4) N(6) - C(13) - C(16) - N(7)C(14)-C(13)-C(16)-N(7) C(15)-C(13)-C(16)-N(7) N(7)-C(17)-C(18)-O(5) N(7)-C(17)-C(18)-N(8) N(1) - N(2) - N(3) - C(1)C(2) - C(1) - N(3) - N(2)C(3) - C(1) - N(3) - N(2)C(4) - C(1) - N(3) - N(2)O(1)-C(4)-N(4)-C(5) C(1) - C(4) - N(4) - C(5)C(7) - C(5) - N(4) - C(4)C(6) - C(5) - N(4) - C(4)C(8)-C(5)-N(4)-C(4) O(2)-C(8)-N(5)-C(9)

-31.43(18) -146.59(14) 89.15(16) 153.10(13) 37.95(19) -86.32(16) 149.33(13) 26.84(18) -92.87(16) -31.59(17) -154.08(13)86.20(15) 144.74(14) 21.6(2)-98.14(16)-40.08(18)-163.22(14)77.05(16) 160.53(13) 37.43(19)-82.38(17) -24.04(18)-147.14(13)93.05(15) 172.41(14) -7.9(2) 166.9(11) -168.97(14) -48.85(19) 68.94(17) 0.7(2)176.02(12) 68.69(17) -170.95(13) -53.27(18) -0.2(2)

C(5)-C(8)-N(5)-C(9)	-179.21(12)
C(11) - C(9) - N(5) - C(8)	76.84(17)
C(10) - C(9) - N(5) - C(8)	-162.57(13)
C(12) - C(9) - N(5) - C(8)	-46.40(18)
O(3)-C(12)-N(6)-C(13)	2.2(2)
C(9) - C(12) - N(6) - C(13)	-172.90(13)
C(14)-C(13)-N(6)-C(12)	65.35(18)
C(15)-C(13)-N(6)-C(12)	-174.49(14)
C(16)-C(13)-N(6)-C(12)	-58.30(18)
O(4) - C(16) - N(7) - C(17)	-2.4(2)
C(13)-C(16)-N(7)-C(17)	-177.70(12)
C(18)-C(17)-N(7)-C(16)	-83.05(18)

Table S8. Hydrogen bonds for N_3 -(Aib)₄-GlyNH₂ [A and deg.].

-				
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N (8) -H (8B) O (3) #1 N (8) -H (8A) O (3) N (5) -H (5) O (6) #2 N (4) -H (4) O (4) #3 N (7) -H (7) O (2) N (6) -H (6) O (1)	0.90(2) 0.89(2) 0.84(2) 0.91(2) 0.82(2) 0.83(2)	2.06(2) 2.17(2) 2.11(2) 2.15(2) 2.09(2) 2.20(2)	2.9604(17) 3.0498(19) 2.9249(18) 3.0342(17) 2.8880(18) 2.9957(17)	174(2) 171(2) 163(2) 165.2(18) 162(2) 162(2)
О(б)-н(бр)О(5)#1	0.84	1.0/	2.6956(17)	10/.9

Torsion angles for N₃-(Aib)₄-GlyNH₂

Figure S33. Highlighting the ω torsion angles for one molecule in the unit cell for N₃-(Aib)₄-GlyNH₂.

Figure S34. Highlighting the ϕ torsion angles for one molecule in the unit cell for N₃-(Aib)₄-GlyNH₂.

Figure S35. Highlighting the ψ torsion angles for one molecule in the unit cell for N₃-(Aib)₄-GlyNH₂.

Intramolecular Hydrogen-bonding interactions in N₃-(Aib)₄-GlyNH₂

Figure S36. Intramolecular hydrogen bonding interactions present in one molecule of N_3 -(Aib)₄-GlyNH₂ found in the unit cell.

Packing of *M* and *P* Helices in N₃-(Aib)₄-GlyNH₂

Figure S37. Arrangement of M and P helices in the solid-state for N₃-(Aib)₄-GlyNH₂.

Crystal data for Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂

Table S9. Crystal data and structure refinement for Cbz-L-Phe-(Aib) $_4-\rm Ac_5c-(Aib)_4-GlyNH_2$

Identification code	Cbz-L-Phe-(Aib) $_4$ -Ac ₅ c-(Aib) $_4$ -GlyNH $_2$
Empirical formula	C57 H88.50 N12 O14.25
Formula weight	1169.90
Temperature	100(2) К

```
0.71073 A
Wavelength
Crystal system, space group
                                 Monoclinic, P2<sub>1</sub>
                                  a = 13.774(7)
Unit cell dimensions
                                                  alpha = 90
                                  b = 9.540(5)
                                                 beta = 94.375(9)
                                  c = 48.58(2)
                                                  gamma = 90
                                  6365(6) A^3
Volume
Z, Calculated density
                                  4, 1.221 Mg/m^3
Absorption coefficient
                                 0.089 mm^-1
                                  2514
F(000)
Crystal size
                                  0.65 x 0.45 x 0.15 mm
Theta range for data collection 1.76 to 23.26 deg.
Limiting indices
                                  -15<=h<=15, -10<=k<=10, -52<=1<=53
Reflections collected / unique
                                 39207 / 18208 [R(int) = 0.1564]
Completeness to theta = 23.26
                                 99.9 %
Absorption correction
                                  None
Refinement method
                                  Full-matrix least-squares on F<sup>2</sup>
Data / restraints / parameters
                                 18208 / 2000 / 1639
Goodness-of-fit on F^2
                                 1.083
Final R indices [I>2sigma(I)] R1 = 0.1288, wR2 = 0.3080
R indices (all data)
                                 R1 = 0.1610, wR2 = 0.3294
Largest diff. peak and hole 0.809 and -0.466 e.A^-3
```


Table S10. Hydrogen bonds for Cbz-L-Phe-(Aib) $_4-Ac_5c-(Aib)\,_4-GlyNH_2$ [A and deg.].

D-HA	d (D-H)	d(HA)	d(DA)	<(DHA)
	0.00	1 00	0 04040	1.00
$N(1) - H(1N) \dots O(26) \# 1$	0.88	1.98	2.849(8)	168.6
$N(2) - H(2N) \dots O(1S) #2$	0.88	2.14	3.009(10)	16/./
$N(3) - H(3N) \dots O(2)$	0.88	2.18	3.050(10)	170.1
$N(4) - H(4N) \dots O(3)$	0.88	2.11	2.974(9)	165.1
$N(5) - H(5N) \dots O(4)$	0.88	2.10	2.941(13)	159.0
N(6)-H(6N)O(5)	0.88	2.13	3.007(10)	171.3
N(7)-H(7N)O(6)	0.88	2.14	3.012(10)	168.6
N(8)-H(8N)O(7)	0.88	1.99	2.840(13)	161.8
N(9)-H(9N)O(8)	0.88	2.13	3.007(12)	172.3
N(10)-H(10N)O(9)	0.88	2.12	2.956(12)	158.8
N(11)-H(11N)O(10)	0.88	2.15	2.876(11)	139.5
N(12)-H(12A)O(2S)	0.88	2.06	2.74(3)	133.8
N(13)-H(13N)O(2S)#3	0.88	2.77	3.19(3)	110.8
N(14)-H(14N)O(2S)#3	0.88	2.15	2.97(3)	154.8
N(15)-H(15N)O(15)	0.88	2.20	3.044(17)	160.3
N(16)-H(16N)O(16)	0.88	2.16	3.021(15)	164.9
N(17)-H(17N)O(17)	0.88	2.08	2.927(14)	162.4
N(18)-H(18N)O(18)	0.88	2.09	2.958(12)	170.5
N(19)-H(19N)O(19)	0.88	2.13	2.987(11)	165.1
N(20) - H(20N)O(20)	0.88	2.09	2.895(12)	151.1
N(21)-H(21N)O(21)	0.88	2.13	3.002(10)	174.0
N(22) - H(22N) O(22)	0.88	2.11	2.947(9)	159.2
N(23) - H(23N) O(23)	0.88	2.08	2.884(10)	151.3
N(24) - H(24E) - O(24)	0.88	2.12	2,963(9)	159.9
, , .= (= == / • • • • • (= = /				

Torsion angles for Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂

Figure S38. Highlighting the ω torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂.

Figure S39. Highlighting the ω torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂.

Figure S40. Highlighting the ϕ torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂.

Figure S41. Highlighting the ϕ torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂.

Figure S42. Highlighting the ψ torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂.

Figure S43. Highlighting the ψ torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂.

Intramolecular Hydrogen-bonding interactions in Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂.

Figure S44. Intramolecular hydrogen bonding interactions present in one molecule of Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂ in the unit cell.

Figure S45. Intramolecular hydrogen bonding interactions present in one molecule of Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂ found in the unit cell.

Figure S46. Intermolecular hydrogen bonding interactions present between two molecules of Cbz-L-Phe- $(Aib)_4$ -Ac₅c- $(Aib)_4$ -GlyNH₂ of the opposite screw-sense preference found in the unit cell.

Figure S47. Packing of Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂ in the unit cell displaying pseudo-symmetry with a non-crystallographic C_2 axis.

 $\underline{\text{Length of } 3_{10} \text{Helical Conformation in } \text{Cbz-L-Phe-}(Aib)_4 - Ac_5c - (Aib)_4 - GlyNH_2}$

Figure S48. Length of 3₁₀ helical conformation adopted by Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂ for one molecule in the unit cell.

Figure S49. Length of 3_{10} helical conformation adopted by Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂for one molecule in the unit cell.

Crystal data for Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH_{2.}

Table S11. Crystal data and structure refinement for Cbz-L-Phe-(Aib) $_4-$ Ac_6c-(Aib) $_4-$ GlyNH $_2.$

Identification code	$Cbz-L-Phe-(Aib)_4-Ac_6c-(Aib)_4-GlyNH_2.$
Empirical formula	C232 H356 N48 O54
Formula weight	4681.65
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2 ₍₁₎
Unit cell dimensions	a = 18.316(6) alpha = 90 b = 17.553(6) beta = 96.012(6) c = 20.359(7) gamma = 90
Volume	6509(4) A^3
Z, Calculated density	1, 1.194 Mg/m^3
Absorption coefficient	0.086 mm^-1
F(000)	2516
Crystal size	0.50 x 0.40 x 0.15 mm
Theta range for data collection	2.20 to 25.03 deg.
Limiting indices	-21<=h<=21, -20<=k<=20, -24<=1<=24
Reflections collected / unique	45952 / 11842 [R(int) = 0.1228]

Completeness to theta = 25.03	99.6 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	11842 / 8 / 1539
Goodness-of-fit on F^2	1.115
<pre>Final R indices [I>2sigma(I)]</pre>	R1 = 0.0852, $wR2 = 0.1972$
R indices (all data)	R1 = 0.1472, $wR2 = 0.2173$
Largest diff. peak and hole	0.490 and -0.319 e.A^-3

Table S12.	Hydrogen bond	ls for Cbz-L-Pl	ne-(Aib) ₄ -Ac ₆ c	-(Aib) ₄ -GlyNH ₂	[A and deg.].
			(). 0	· · · · · ·	•

_

-

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(12)-H(12N)O(11) 0.88	(2) 2.14((3) 3.012	(12) 171(12)
N(23)-H(23N)O(23	6) 0.88	2.04	2.865(1	2) 155.0
N(22)-H(22N)O(22	2) 0.88	2.17	3.023(1	2) 161.9
N(21)-H(21N)O(21) 0.88	2.13	2.958(1	3) 157.2
N(20)-H(20N)O(20	0.88	2.31	3.156(1	1) 160.2
N(19)-H(19N)O(19	0.88	2.16	2.993(1	2) 157.1
N(18)-H(18N)O(18	6) 0.88	2.18	3.005(1	2) 154.8
N(17)-H(17N)O(17	') 0.88	2.14	2.980(1	1) 160.6
N(16)-H(16N)O(16	b) 0.88	2.15	2.995(1	2) 161.5
N(15)-H(15N)O(15	6) 0.88	2.23	3.038(1	1) 152.7
N(14)-H(14N)O(13	6)#1 0.8	8 2.08	2.881(12) 150.2
N(13)-H(13N)O(12	2)#1 0.8	8 1.98	2.829(11) 160.4
N(11)-H(11N)O(10	0.88	2.07	2.926(1	1) 163.5
N(10)-H(10N)O(9)	0.88	2.07	2.912(1	1) 160.0
N(9)-H(9N)O(8)	0.88	2.06	2.910(11)	161.3
N(8)-H(8N)O(7)	0.88	2.28	3.108(11)	157.3
N(7)-H(7N)O(6)	0.88	2.16	2.963(12)	150.8
N(6)-H(6N)O(5)	0.88	2.26	3.056(11)	150.3
N(5)-H(5N)O(4)	0.88	2.15	2.953(11)	151.2
N(4)-H(4N)O(3)	0.88	2.19	3.004(11)	154.3
N(3)-H(3N)O(2)	0.88	2.21	2.970(10)	144.6
N(2)-H(2N)O(26)#	2 0.88	2.11	2.958(1	1) 162.9
N(1)-H(1N)O(25)#	2 0.88	2.04	2.899(1	1) 166.3

Torsion angles for Cbz-L-Phe-(Aib)4-Ac6c-(Aib)4-GlyNH2

Figure S50. Highlighting the ω torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH₂.

Figure S51. Highlighting the ω torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH₂.

Figure S52. Highlighting the ϕ torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH₂.

Figure S53. Highlighting the ϕ torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH₂.

Figure S54. Highlighting the Ψ torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH₂.

Figure S55. Highlighting the Ψ torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH₂.

Intramolecular Hydrogen-bonding interactions in Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH₂.

Figure S56. Intramolecular hydrogen bonding interactions present in one molecule of Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH₂ found in the unit cell.

Figure S57. Intramolecular hydrogen bonding interactions present in one molecule of Cbz-L-Phe- $(Aib)_4$ -Ac₆c- $(Aib)_4$ -GlyNH₂ found in the unit cell.

Figure S58. Intermolecular hydrogen bonding interactions present between two molecules of Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH₂ of the opposite screw-sense preference found in the unit cell.

Figure S59. Intermolecular hydrogen bonding interactions present between two molecules of Cbz-L-Phe- $(Aib)_4$ -Ac₆c- $(Aib)_4$ -GlyNH₂ of the opposite screw-sense preference found in the unit cell.

Packing of Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH₂ in the unit cell

Figure S60. Packing of Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH₂ in the unit cell displaying no pseudo-symmetric C_2 axis.

Length of 3₁₀ Helical Conformation in Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH₂

Figure S61. Length of 3_{10} helical conformation adopted by Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH₂ for one molecule in the unit cell.

Figure S62. Length of 3_{10} helical conformation adopted by Cbz-L-Phe-(Aib)₄-Ac₆c-(Aib)₄-GlyNH₂. for one molecule in the unit cell.

Table S13. Crystal data and structure refinement for Cbz-L-Phe-(Aib) $_4\text{-Bip-}(Aib)_4\text{-GlyNH}_2$

Identification code	Cbz-L-Phe-(Aib) $_4$ -Bip-(Aib) $_4$ -GlyNH $_2$			
Empirical formula	C67.50 H97 N12 O16			
Formula weight	1332.57			
Temperature	100(2) K			
Wavelength	0.71073 A			
Crystal system, space group	Monoclinic, P2(1)			
Unit cell dimensions	a = 19.474(6) alpha = 90 b = 13.389(4) beta = 95.638(5) c = 28.731(9) gamma = 90			
Volume	7455(4) A^3			
Z, Calculated density	4, 1.187 Mg/m^3			
Absorption coefficient	0.085 mm^-1			
F(000)	2856			
Crystal size	0.60 x 0.25 x 0.08 mm			
Theta range for data collection	2.08 to 20.82 deg.			
Limiting indices	-19<=h<=19, -13<=k<=13, -28<=1<=28			
Reflections collected / unique	35778 / 8239 [R(int) = 0.1609]			
Completeness to theta = 20.82	99.9 %			
Absorption correction	None			
Refinement method	Full-matrix least-squares on F^2			
Data / restraints / parameters	8239 / 2941 / 1663			
Goodness-of-fit on F^2	1.095			
Final R indices [I>2sigma(I)]	R1 = 0.1202, $wR2 = 0.2993$			

 R indices (all data)
 R1 = 0.1818, wR2 = 0.3417

 Largest diff. peak and hole
 0.586 and -0.450 $e.A^{-3}$

Table S14. Hydrogen bonds for $Cbz-L-Phe-(Aib)_4-Bip-(Aib)_4-GlyNH_2$ [A and deg.].

—				
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N (12B) -H (12F) N (12) #1 N (12B) -H (12F) O (13) #1 N (12B) -H (12E) O (1S) #2 N (11B) -H (11B) O (10B) N (10B) -H (10M) O (9B)	0.88 0.88 0.88 0.88 0.88	2.97 2.55 2.03 2.21 2.11	3.66(3) 3.10(2) 2.84(2) 3.07(2) 2.968(17)	136.2 121.7 152.1 165.2 164 3
N(9B)-H(9BN)O(8B)	0.88	2.13	2.990(15)	164.6
N(8B)-H(8BN)O(7B)	0.88	2.16	3.019(16)	166.5
N(7B)-H(7BN)O(6B)	0.88	2.22	3.073(15)	161.9
N(6B)-H(6BN)O(5B)	0.88	2.11	2.954(15)	160.6
N(5B)-H(5BN)O(4B)	0.88	2.10	2.910(17)	152.8
N(4B)-H(4BN)O(3B)	0.88	2.16	2.994(18)	159.1
N(3B)-H(3BN)O(2B)	0.88	2.17	2.97(2)	150.1

N(1B)-H(1BN)O(12B)#3	0.88	2.04	2.83(2)	149.0
N(12)-H(12A)N(12B)#4	0.88	3.01	3.66(3)	132.2
N(11)-H(11N)O(10)	0.88	1.94	2.733(19)	149.0
N(10)-H(10N)O(9)	0.88	2.16	3.002(17)	159.8
N(9)-H(9N)O(8)	0.88	2.11	2.983(15)	171.8
N(8)-H(8N)O(7)	0.88	2.07	2.922(16)	162.2
N(7)-H(7N)O(6)	0.88	2.25	3.097(15)	162.0
N(6)-H(6N)O(5)	0.88	2.06	2.917(15)	164.2
N(4)-H(4N)O(3)	0.88	2.20	3.053(16)	163.0
N(3)-H(3N)O(2)	0.88	2.18	3.040(18)	166.1
N(1)-H(1N)O(12)#5	0.88	2.12	2.947(19)	155.8
N(5)-H(5N)O(4)	0.88	2.04	2.870(16)	157.3
N (6) -H (6N) O (5) N (4) -H (4N) O (3) N (3) -H (3N) O (2) N (1) -H (1N) O (12) #5 N (5) -H (5N) O (4)	0.88 0.88 0.88 0.88 0.88	2.06 2.20 2.18 2.12 2.04	2.917(15) 3.053(16) 3.040(18) 2.947(19) 2.870(16)	164.2 163.0 166.1 155.8 157.3

Torsion angles for Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂

Figure S63. Highlighting the ω torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂.

Figure S64. Highlighting the ω torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂.

Figure S65. Highlighting the ϕ torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂.

Figure S66. Highlighting the ϕ torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂.

Figure S67. Highlighting the Ψ torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂.

Figure S68. Highlighting the Ψ torsion angles for one molecule in the unit cell for Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂.

Intramolecular Hydrogen-bonding interactions in Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂.

Figure S69. Intramolecular hydrogen bonding interactions present in one molecule of Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂found in the unit cell.

Figure S70. Intramolecular hydrogen bonding interactions present in one molecule of Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂ found in the unit cell.

Figure S71. Packing of molecules in the unit cell of Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂.

Figure S72. Intermolecular hydrogen bonding interaction present between two molecules of Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂ of the same screw-sense preference found in the unit cell.

Figure S73. Intermolecular hydrogen bonding interaction present between two molecules of Cbz-L-Phe- $(Aib)_4$ -Bip- $(Aib)_4$ -GlyNH₂ of the same screw-sense preference found in the unit cell.

Figure S74. Packing of Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂ in the unit cell with pseudo-symmetry with a non-crystallographic C_2 axis.

Figure S75. Packing of Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂ in the unit cell with pseudo-symmetry with a non-crystallographic C_2 axis.

Figure S76. Packing of Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂ in the unit cell with pseudo-symmetry with a non-crystallographic C_2 axis.

Length of 310 Helical Conformation in Cbz-L-Phe-(Aib)4-Bip-(Aib)4-GlyNH2

Figure S77. Length of 3_{10} helical conformation adopted by Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂ for one molecule in the unit cell.

Figure S78. Length of 3_{10} helical conformation adopted by Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂ for one molecule in the unit cell.

Axial Chirality in Bip Residue in Cbz-L-Phe-(Aib)₄-Ac₅c-(Aib)₄-GlyNH₂

Figure S79. Axial chirality of Bip residue in the P helix of Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂.

Figure S80. Axial chirality of Bip residue in the M helix of Cbz-L-Phe-(Aib)₄-Bip-(Aib)₄-GlyNH₂.

Appendix: ¹H, ¹³C NMR spectra

¹³C NMR spectrum (125 MHz, CDCl₃) of CbzPheAib₄O'Bu.

References

1. J. Clayden, A. Castellanos, J. Solà, G. A. Morris, Angew. Chem. Int. Ed., 2009, 48, 5962.

2. L. Byrne, J. Solà, T. Boddaert, T. Marcelli, R. W. Adams, G. A. Morris, J. Clayden, Angew. Chem. Int. Ed., 2014, 53, 151.