Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supporting Information

Predicting self-assembly and structure in diluted aqueous solutions of modified *mono-* and *bis-*βcyclodextrins that contain naphthoxy chromophore groups

Thais Carmona^a, Katia Martina^b, Laura Rinaldi^b, Luisa Boffa^b, Giancarlo Cravotto^b, Francisco Mendicuti^a*

a Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá. 28871 Alcalá de Henares. Madrid. Spain.

b Dipartimento di Scienza e Tecnologia del Farmaco of the University of Torino. Via Pietro Giuria, 9-10125 Torino, Italy

Table of Content

General Synthesis Protocols.	4
Synthesis of β -propargyloxynaphthalene (1).	5
Synthesis of 6^{I} -deoxy- 6^{I} -(4-((2-naphthyloxy)methyl)-1 <i>H</i> -1,2,3-triazol-1-yl)- β -CD (2 , <i>mono</i> -N β CD).	6
Synthesis of 2,7-dipropargyloxynaphthalene (3).	7
Synthesis of $2((1-(6^{I}-\text{deoxy}-\beta-\text{cyclodextrin}-6^{I}-\text{yl})-1H-1,2,3-\text{triazol}-4-\text{yl})$ methoxy) 7-propargyloxy naphthalene (4).	8
Synthesis of 2,7-bis-((1-(6^{I} -deoxy- β -cyclodextrin- 6^{I} -yl)-1 <i>H</i> -1,2,3-triazol-4-yl)methoxy) naphthalene (5 , <i>bis</i> -N β CD).	9
¹ H NMR, APT, HSQC NMR and MS spectra of compounds 1-5 .	12-21

Figure 1S. a) Emission spectra for MON and dMON (dashed) in water at 22 25°C. b) Lifetime as a function of solvent polarity, ε , for model compounds MON (\Box) and dMON (\triangle) at 25°C in linear water *n*-alcohols from methanol to *n*-heptanol and some methanol and ethanol:water mixtures.

Figure 2S. Emission spectra for MON (left) and dMON (right) in some 23 solvents of different polarities at 25°C. Spectra for dMON were normalized at the maximum of the low energy emission band. Intensity of the high energy band significantly decreases with the polarity of the solvent.

Figure 3S. Lifetime variation with [β CD] at 25 °C for MON (\blacktriangle) and dMON 24 (\triangle). [β CD] were 0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0 y 10×10⁻³ M and 0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.1, 5.9, 8.0 y 10×10⁻³ M respectively. Chromophore concentrations were fixed at 10⁻⁵ M.

Figure 4S. (a) Emission spectra for *mono*-N β CD (—) and *bis*-N β CD (—) 25 aqueous solutions of concentrations 1.0×10^{-6} M and 0.6×10^{-6} M respectively upon excitation of 285 nm at 25°C; (b) Corrected fluorescence intensity using equation 2 as a function of the concentration of naphtoxy or binaphthoxy groups. Concentrations were 1, 2, 4, 6, 8, 10, 20, 30 y 40×10^{-6} M for *mono*N β CD (\blacktriangle) and 6, 17, 35, 80,121, 200, 385, 599 y 802×10^{-6} M for *bis*-N β CD (\bigtriangleup).

Figure 5S. van't Hoff plot for the *mono*-N β CD heteroassociation with β CD. 26 **Table 1S.** Binding constants for the *mono*-N β CD heteroassociation with β CD 26 at different temperatures

Figure 6S. (a) Emission spectra and (b) lifetimes, τ , for dilute solutions of 27 *mono*-N β CD in different *n*-alcohols (methanol, *n*-propanol, *n*-penthanol and *n*-hepthanol) and methanol:water (50%) and ethanol:water (79 %) (v/v) mixtures as a function of the medium dielectric permitivity, ε at 25 °C.

Figure 7S. Weighted average fluorescence lifetime, $\langle \tau \rangle$ variation with CB7 28 concentration at 25 °C. [mono-N β CD] was 1.4×10^{-5} M.

Figure 8S. Stern-Volmer plots obtained from fluorescence lifetime 29 measurements on aqueous MON (\Box), dMON (\bigcirc), *mono*-N β CD (\blacksquare) and *bis*-N β CD (\bullet) solutions at a 10⁻⁵ M concentration and the *mono*-N β CD (\triangle) at a 8×10⁻⁵ M concentration.

Table 2S. Geometrical parameters, the averages of some distances and angles 30 between transition moments and the CD main axis, from the analysis of the MD trajectories on *mono-* and *bis-*N β CDs. The probabilities of finding angles smaller than 54.7° for different transitions appear in bold and in parentheses. The values for energy conformation minima appear simply between parentheses.

Figure 98. Minimum binding energy structure for *bis*-N β CD obtained from 31 the analysis of the MD trajectory.

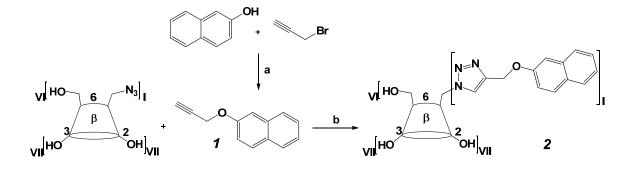
Table 3S. Averages for several distances, angles between naphthoate ON group 32 transition moments and the main β CD axis for each CD, as well as binding energies and contributions obtained from the analysis of the 2ns MD trajectories in TH and TT arrangements of the non-covalent (*mono*-N β CD)₂ dimers. Values for the minima binding energy structures are found in parentheses.

General Synthesis Protocols

Reactions were monitored by TLC on Merck 60 F254 (0.25 mm) plates, which were visualized by UV inspection and/or by heating after being sprayed with phosphomolybdic acid.

Reactions under combined MW/US irradiation were performed in a professional multimode oven, (Microsynth, Milestone), operating at 2.45 GHz, equipped with a high-power pyrex[®] US probe (20.5 kHz working frequency) and the temperature was strictly monitored by a fiber optic thermometer inside the reaction vessel.

Flash-chromatography purifications were performed on CombiFlash *Rf* (Teledyne ISCO), an automatic device with auto injection, fractions collector and UV detector.


IR spectra were recorded with a Shimadzu FT-IR 8001 spectrophotometer.

NMR spectra were recorded on a Bruker 300 Avance (300 MHz and 75 MHz for ¹H and ¹³C, respectively) at 25°C; chemical shifts were calibrated to residual proton and carbon resonances of the solvents, *viz.* CDCl₃ ($\delta_{\rm H} = 7.27$, $\delta_{\rm C} = 77.16$) and DMSO-*d*₆ ($\delta_{\rm H} = 2.50$, $\delta_{\rm C} = 39.52$). Chemical shifts (δ) are given in ppm and coupling constants (*J*) in Hz.

Low-resolution mass spectra were recorded on a Finnigan-MAT TSQ70 in electron impact (EI) and chemical ionization (CI) with isobutane as reactant gas; ESI-mass spectra were recorded on a Waters Micromass ZQ equipped with ESI source.

Scheme 1. Synthesis of β -CD (naphthyloxy)methyl triazolyl asymmetric derivative (2, *mono*-N β CD).

Reagents and conditions: a) K₂CO₃, acetone, 70°C (rfx); b) Cu powder, MW/US,

100°C, 1.5 h, DMF.

Synthesis of β-propargyloxynaphthalene (1)

In a two-necked round-bottomed flask (50 ml), 400 mg of β -naphthol (2.78 mmol, 1 eq) was dissolved in 10 ml of acetone and 1.53 g of K₂CO₃ (11.12 mmol, 4 eq) was added to the solution. The mixture was kept at 70°C for 30 min under magnetical stirring. Subsequently 360 µl of propargyl bromide (3.34 mmol, 1.2 eq) was added and the reaction was left at 70°C for 4 h.

Acetone was removed under vacuum. The crude product was extracted with CH_2Cl_2 , dried under vacuum and purified on silica gel (flash chromatography) using a PE/EtOAc gradient. 325.1 mg of pure β -propargyloxynaphthalene was obtained (1.785 mmol, 64%).

Yellow powder. Rf = 0.63 (PE/EtOAc 8:2).

IR (KBr, cm⁻¹): v 3283, 3050, 2120 (alkyne), 1632, 1599, 1472, 1354, 1252, 1174, 1013, 837, 749, 687, 664, 478.

¹H NMR (CDCl₃, 300 MHz): δ 7.81-7.76 (overlapped signals, 3H, H-1,5,8), 7.47 (t, J = 7.5 Hz, 1H, H-6), 7.37 (t, J = 7.5 Hz, 1H, H-7), 7.22 (d, J = 2.7 Hz, 1H, H-3), 7.19 (d, J = 2.7 Hz, 1H, H-4), 4.83 (d, J = 2.4 Hz, 2H, O-CH₂C=CH), 2.50 (t, J = 2.4 Hz, 1H, O-CH₂C=CH).

¹³C NMR (CDCl₃, 75 MHz): δ 155.5 (C-2), 134.4 (C-8'), 129.7 (C-5), 129.4 (C-4'), 127.8 (C-1), 127.1 (C-8), 126.6 (C-6), 124.2 (C-7), 118.8 (C-4), 107.6 (C-3), 78.6 (O-CH₂*C*≡CH), 75.8 (O-CH₂*C*≡CH), 55.9 (O-CH₂*C*≡CH).

CI-MS $(m/z, \%) = 183 (100\%) [M + H]^+$.

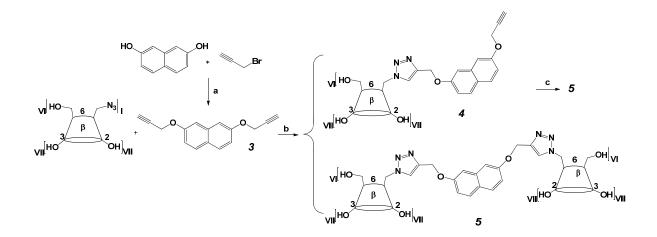
Synthesis of 6^{1} -deoxy- 6^{1} -(4-((2-naphthyloxy)methyl)-1*H*-1,2,3-triazol-1-yl)- β -CD (2, *mono*-N β CD).

In a three-necked pear-shaped reaction vessel (100 ml), 200 mg of 6^{I} -azido- 6^{I} -deoxy- β -CD (0.172 mmol, 1 eq) and 126 mg of β -propargyloxynaphthalene (0.690 mmol, 4 eq) were dissolved in 10 ml of DMF and 100 mg of Cu powder was added to the solution. The reaction was carried out under combined MW/US irradiation at 100°C for 1.5 h (power of 100 W for MW, 35 W for US). The reaction outcome was monitored by TLC (*i*PrOH/H₂O/EtOAc/NH₄OH = 5:3:1:1).

The copper was filtered off on filter paper. After evaporation of DMF under vacuum, the crude product was crystallized in a water/acetone mixture and then purified on RP18 (flash-chromatography) using a $H_2O/MeOH$ gradient. 173 mg of pure product was obtained (0.129 mmol, 75%).

White powder. Rf = 0.77 (*i*PrOH/H₂O/EtOAc/NH₄OH = 5:3:1:1).

IR (KBr, cm⁻¹): v 3400, 3283, 2926, 1632, 1510, 1213, 1155, 1078, 1028, 837, 478.


¹H NMR (DMSO-*d*₆, 300 MHz): δ 8.23 (s, 1H, H-5 Tz), 7.85-7.79 (overlapped signals, 3H, H-1,5,8 Npth), 7.50-7.17 (overlapped signals, 4H, H-7,6,4,3 Npth), 5.92-5.68 (overlapped signals, 14H, 2,3-OH), 5.22 (s, 4H, Tz-C*H*₂-O-Npth), 5.05 (s, 1H, H-1'), 4.96 (m, 1H, H-6'ab), 4.90-4.72 (m, 6H, H-1), 4.61 (m, 1H, H-6'ab), 4.59-4.31 (overlapped signals, 6H, 6-OH), 4.01 (m, 1H, H-5'), 3.82-3.49 (overlapped signals, 23H, H-3,5,6), 3.45-3.24 (overlapped signals, 14H, H-2,4), 3.14 (brm, 1H, H-6'ab), 2.88 (brm, 1H, H-6'ab).

¹³C NMR (DMSO-*d*₆, 75 MHz): δ 156.1 (C-2 Npth), 142.4 (C-4 Tz), 134.2 (C-8' Npth), 129.4 (C-5 Npth), 129.3 (C-4' Npth), 128.6 (C-1 Npth), 127.5,126.8 (C-8,6 Npth), 126.4 (C-7 Npth), 125.6 (C-5 Tz), 118.7 (C-4 Npth), 107.1 (C-3 Npth), 102.3, 102.0, 101.9 (C-1), 83.5, 82.1 81.6, 81.5, 81.4, 81.0 (C-4), 73.2, 72.4, 72.3, 72.1, 71.8, 70.0 (C-2,3,5), 70.9 (C-5'), 61.0 (Tz-*C*H₂-O-Naf), 60.2, 60.0, 59.9 (C-6), 55.5 (C-6').

ESI-MS (m/z, %) calc. for C₅₅H₈₀N₃O₃₅ [M + H]⁺ 1343.21, found 1342.87 (25%); for C₅₅H₇₉N₃O₃₅Na [M + Na]⁺ 1364.44, found 1364.81 (100%); for C₅₅H₇₉N₃O₃₅K [M + K]⁺ 1380.55, found 1380.78 (35%).

Scheme 2. Synthesis of 2,7-bis-((1-(6^{I} -deoxy- β -CD- 6^{I} -yl)-1*H*-1,2,3-triazol-4-yl)methoxy)naphthalene (5, *bis*-N β CD).

Reagents and conditions: a) K_2CO_3 , acetone, 70°C (rfx); b) Cu powder, MW/US, 100°C, 1.5 h, DMF; c) 6^I-azido-6^I-deoxy- β -CD, Cu powder, MW/US, 100°C, 1.5 h, DMF.

Synthesis of 2,7-dipropargyloxynaphthalene (3)

In a two-necked round-bottomed flask (50 ml), 1 g of 2,7-dihydroxynaphtalene (6.24 mmol, 1 eq) was dissolved in 15 ml of acetone and 6.89 g of K_2CO_3 (49.9 mmol, 8 eq) was added to the solution. The mixture was kept at 70°C for 30 min under magnetical stirring. Subsequently 1.62 ml of propargyl bromide (14.98 mmol, 2.4 eq) was added and the reaction was left at 70°C for 20 h.

The acetone was removed under vacuum. The crude product was extracted with CH₂Cl₂, dried under vacuum and purified on silica gel (flash chromatography) using a PE/EtOAc gradient. 865 mg of pure 2,7-dipropargyloxynaphthalene was obtained (3.66 mmol, 59%).

Yellow powder. Rf = 0.59 (PE/EtOAc 8:2).

IR (KBr, cm⁻¹): v 3293, 2132 (alkyne), 1626, 1514, 1384, 1208, 1019, 839, 820, 685, 655, 628, 477.

¹H NMR (CDCl₃, 300 MHz): δ 7.67 (d, J = 9 Hz, 2H, H-4,5), 7.18 (d, J = 2.4 Hz, 2H, H-1,8), 7.08 (dd, J = 9, 2.7 Hz, 2H, H-3,6), 4.81 (d, J = 2.4 Hz, 4H, O-CH₂C=CH), 2.58 (t, J = 1.2 Hz, 2H, O-CH₂C=CH).

¹³C NMR (CDCl₃, 75 MHz): δ 156.3 (C-2,7), 135.5 (C-8'), 129.5 (C-4,5), 125.2 (C-4'), 116.7 (C-3,6), 107.1 (C-1,8), 78.6 (O-CH₂*C*≡CH), 75.8 (O-CH₂*C*≡*C*H), 55.9 (O-*C*H₂*C*≡CH).

CI-MS $(m/z, \%) = 237 (100\%) [M + H]^+$.

Synthesis of 6¹-deoxy-6¹-(4-((7-propargyloxynaphthalen-2-yloxy)methyl)-1*H*-1,2,3triazol-1-yl)-β-CD (4)

In a three-necked pear-shaped reaction vessel (100 ml), 400 mg of 6^{I} -azido- 6^{I} -deoxy- β -CD (0.345 mmol, 1 eq) and 244 mg of 2,7-dipropargyloxynaphtalene (1.033 mmol, 3 eq) were dissolved in 10 ml of DMF and afterwards 200 mg of Cu powder were added to the solution.

The reaction was carried out under combined MW/US irradiation at 100°C for 1.5 h (power of 100 W for MW, 35 W for US). The reaction outcome was monitored by TLC (*i*PrOH/H₂O/EtOAc/NH₄OH = 5:3:1:1).

The copper was filtered off on filter paper. After the evaporation of DMF under vacuum, the crude product was crystallized in water/acetone and then purified on RP18 (flash-chromatography) using a H₂O/MeOH gradient. 458.4 mg of pure monomeric product (4, 0.328 mmol, 76%) and 70 mg of pure dimeric product (5, 0.0274 mmol, 13%) were obtained.

6^I-deoxy-6^I-(4-((7-propargyloxynaphthalen-2-yloxy)methyl)-1*H*-1,2,3-triazol-1-yl)-β-

CD (4) White powder. Rf = 0.43 (*i*PrOH/H₂O/EtOAc/NH₄OH = 5:3:1:1).

IR (KBr, cm⁻¹): v 3375, 2926, 1633, 1516, 1157, 1080, 1028, 754, 704, 581.

¹H NMR (DMSO-*d*₆, 300 MHz): δ 8.21 (s, 1H, H-5 Tz), 7.76 (d, *J* = 8.1 Hz, 2H, H-4,5 Npth overlapped), 7.40 (s, 1H, H-8 Npth), 7.30 (s, 1H, H-1 Npth), 7.02 (d, *J* = 9 Hz, 2H,

H-3,6 Npth overlapped), 5.90-5.70 (overlapped signals, 14H, 2,3-OH), 5.20 (s, 2H, H-1, Tz-C*H*₂-O-Npth), 5.05 (s, 1H, H-1), 4.96 (m, 1H, H-6'ab), 4.95 (s, 2H, H-1, CHC-C*H*₂-O-Npth), 4.90-4.79 (m, 6H, H-1), 4.64 (m, 1H, H-6'ab), 4.59-4.34 (overlapped signals, 6H, 6-OH), 4.01 (m, 1H, H-5'), 3.64-3.50 (overlapped signals, 23H, H-3,5,6), 3.48-3.25 (overlapped signals, 14H, H-2,4), 3.15 (brm, 1H, H-6"ab), 2.91 (brm, 1H, H-6"ab). ¹³C NMR (DMSO-*d*₆, 75 MHz): δ 156.8,155.7 (C-2,7 Npth), 142.4 (C-4 Tz), 135.5 (C-8' Npth), 129.2, 129.19 (C-4,5 Npth), 125.7 (C-5 Tz), 124.2 (C-4' Npth), 116.5, 115.9 (C-3,6 Npth), 107.0 (C-8 Npth), 106.6 (C-1 Npth), 102.2, 102.0, 101.9, 101.3 (C-1), 83.5, 82.2, 81.5, 81.4, 81.1 (C-4), 79.3 (C-2 propargyl), 78.4 (C-3 propargyl), 73.2, 73.1, 73.0, 72.9, 72.7, 72.5, 72.4, 72.1, 71.8 (C-2,3,5), 70.0 (C-5'), 61.1 (Tz-*C*H₂-O-Npth), 60.2, 60.0, 59.9 (C-6), 55.5 (C-1 propargyl), 50.5 (C-6^{rab}).

ESI-MS (m/z, %) calc. for C₅₈H₈₂N₃O₃₆ [M + H]⁺ 1397.27, found 1396.88 (40%); for C₅₈H₈₁NaN₃O₃₆ [M + Na]⁺ 1418.45, found 1418.83 (100%); for C₅₈H₈₁KN₃O₃₆ [M + K]⁺ 1434.56, found 1435.84 (50%).

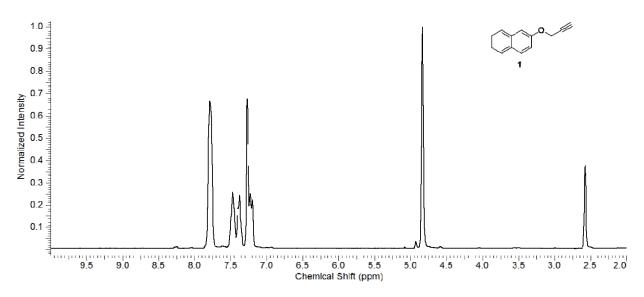
Synthesis of 2,7-bis-((1-(6^{I} -deoxy- β -cyclodextrin- 6^{I} -yl)-1*H*-1,2,3-triazol-4-yl) methoxy) naphthalene (5, *bis*-N β CD)

In order to increase the dimer yield, the same synthetic procedure described above was repeated on 0.150 mg of 6^{I} -azido- 6^{I} -deoxy- β -CD (0.129 mmol, 1 eq) and 180 mg of 6^{I} -deoxy- 6^{I} -(4-((7-propargyloxynaphthalen-2-yloxy)methyl)-1*H*-1,2,3-triazol-1-yl)- β -CD

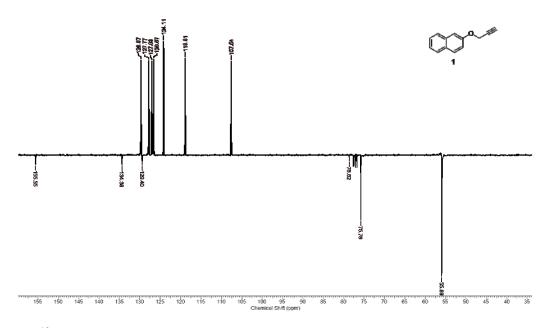
(4, 0.129 mmol, 1 eq). It yielded 92 mg of 2,7-bis-(($1-(6^{I}-deoxy-\beta-cyclodextrin-6^{I}-yl)-$

1*H*-1,2,3-triazol-4-yl)methoxy)naphthalene (5, 0.036 mmol, 28%) after purification.

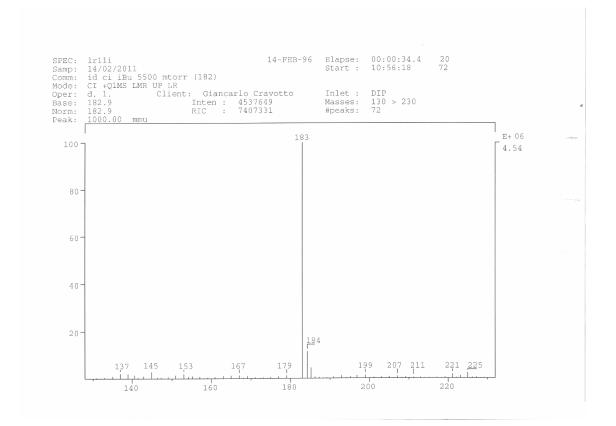
Yellow liquid. Rf = 0.14 (*i*PrOH/H₂O/EtOAc/NH₄OH = 5:3:1:1).

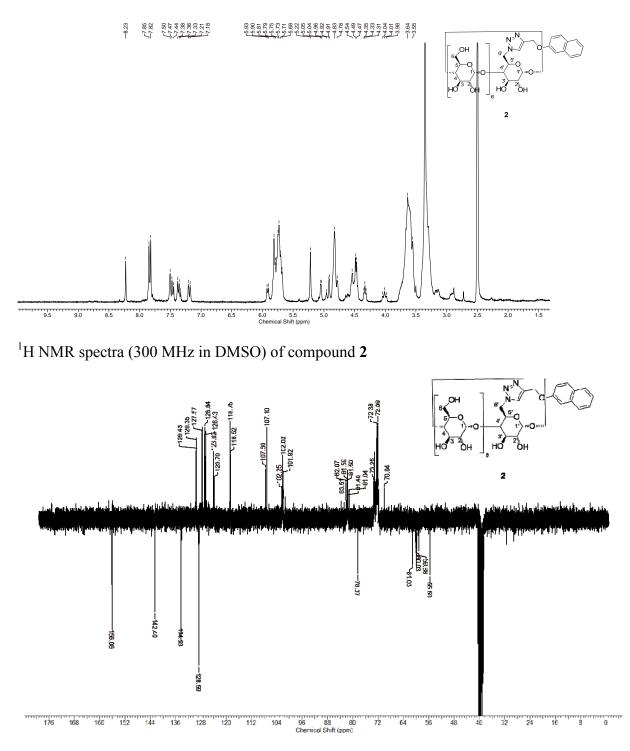

IR (KBr, cm⁻¹): v 3380, 2924, 1640, 1516, 1159, 1080, 1026, 754, 841, 560.

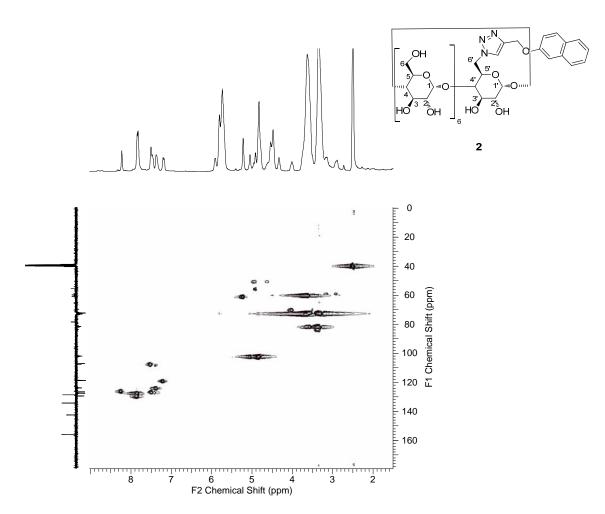
¹H NMR (DMSO-*d*₆, 300 MHz): δ 8.22 (s, 2H, H-5 Tz), 7.75 (d, *J* = 9 Hz, 2H, H-4,5 Npth), 7.44 (d, *J* = 17.1 Hz, 2H, H-1,8 Npth), 7.04 (d, *J* = 9 Hz, 2H, H-3,6 Npth), 5.90-

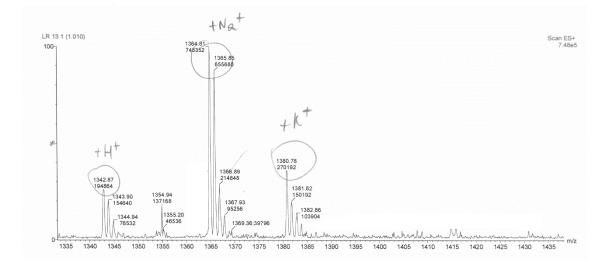

5.60 (overlapped signals, 28H, 2,3-OH), 5.20 (s, 4H, Tz-C*H*₂-O-Npth), 5.06 (s, 2H, H-1), 4.95 (m, 2H, H-6'ab), 4.90-4.72 (m, 12H, H-1), 4.62 (m, 2H, H-6'ab), 4.56-4.41 (overlapped signals, 12H, 6-OH), 4.01 (m, 2H, H-5'), 3.88-3.56 (overlapped signals, 46H, H-3,5,6), 3.47-3.22 (overlapped signals, 28H, H-2,4), 3.18 (brm, 2H, H-6"ab), 2.92 (brm, 2H, H-6"ab).

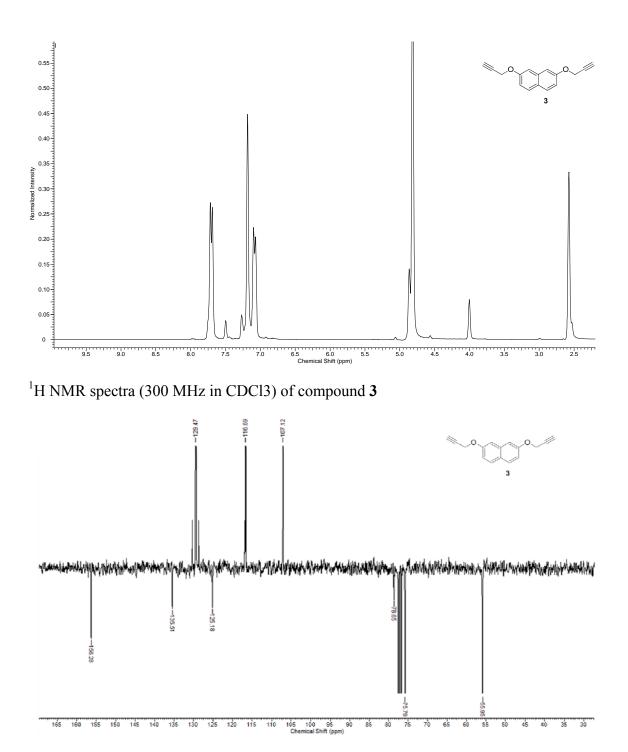
¹³C NMR (DMSO-*d*₆, 75 MHz): δ 156.7 (C-2,7 Npth), 142.4 (C-4 Tz), 129.6 (C-4,5 Npth), 124.1 (C-4',8'Npth), 126.1 (C-5 Tz), 116.2 (C-3,6 Npth), 106.6 (C-1,8 Npth), 102.2, 102.0, 101.3 (C-1), 83.5, 82.0, 81.5, 81.4, 81.1 (C-4), 73.2, 73.1, 73.0, 72.9, 72.7, 72.4, 72.1, 71.8 (C-2,3,5), 70.0 (C-5'), 61.0 (Tz-*C*H₂-O-Npth), 60.0, 59.9, 59.1 (C-6), 50.4 (C-6').

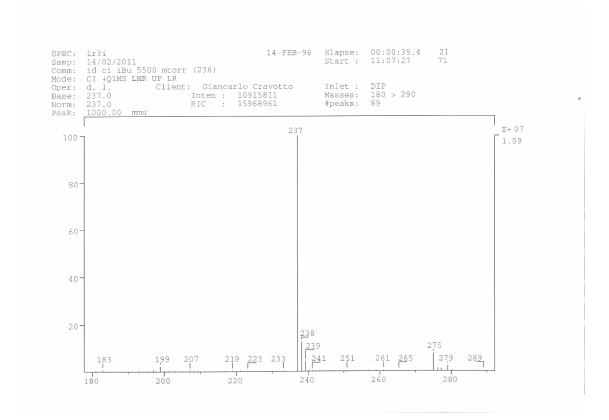

ESI-MS (*m*/*z*, %) calc. for $C_{100}H_{151}N_6O_{70}Na [M + H + Na]^{2+} 1290.12$, found 1290.23 (70%); for $C_{100}H_{151}N_6O_{70}K [M + H + K]^{2+} 1298.18$, found 1298.26 (100%).

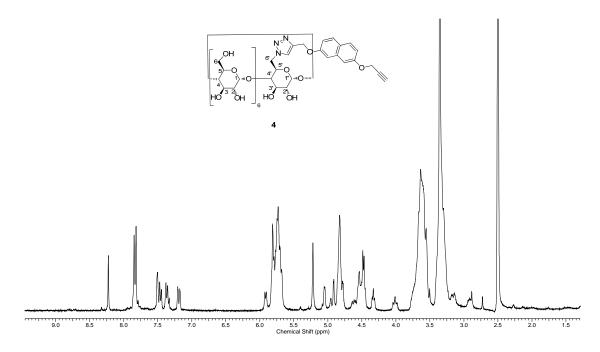

¹H NMR spectra (300 MHz in CDCl₃)of compound 1

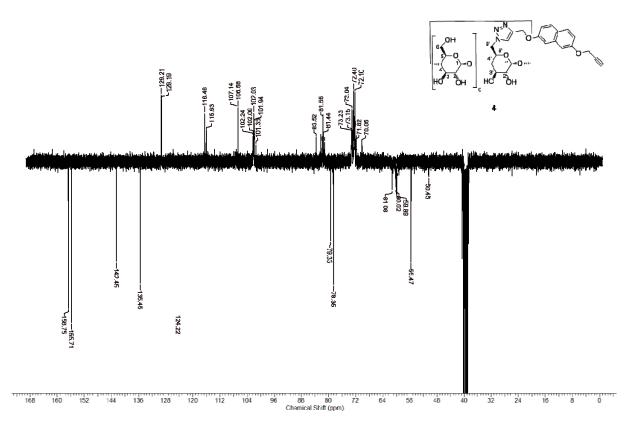

APT ^{13}C NMR spectra (75 MHz in CDCl_3) of compound 1

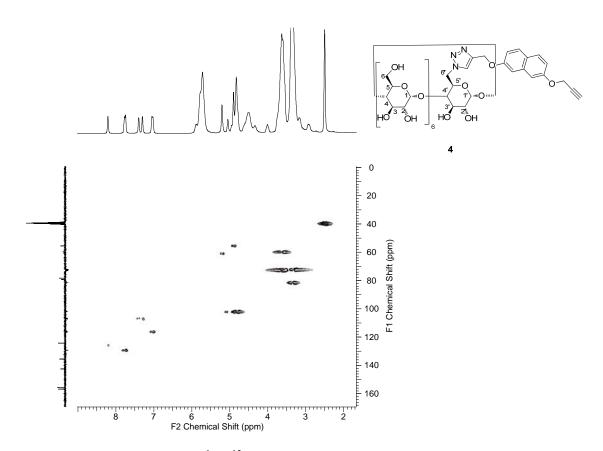

C.I. MS spectra of Compound 1

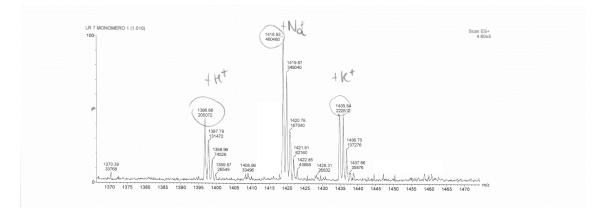

APT ¹³C NMR spectra (75 MHz in DMSO- d_6) of compound **2**

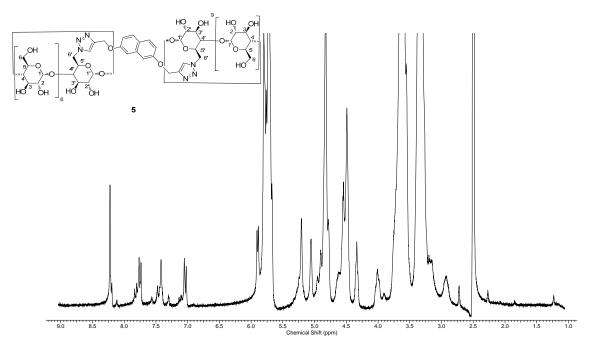

HSQC spectra (300 MHz for ${}^{1}\text{H} - {}^{13}\text{C}$ in DMSO- d_6) of Compound **2**

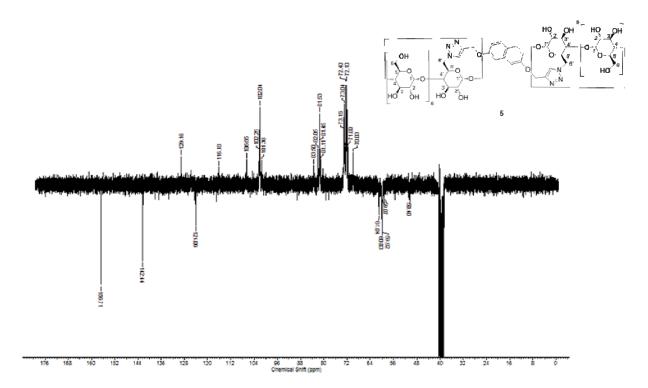

C.I. MS spectra of Compound 2

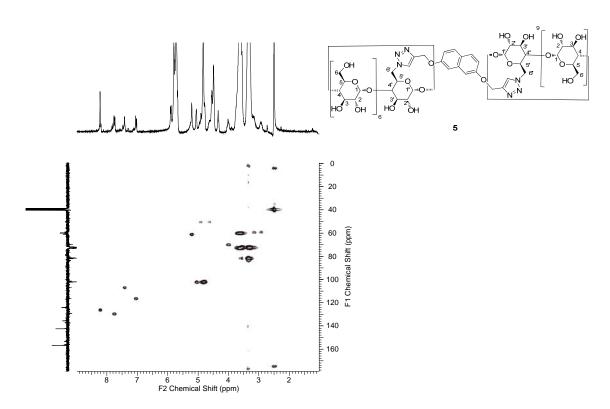

¹³C NMR spectra (75 MHz in CDCl₃) of compound **3**

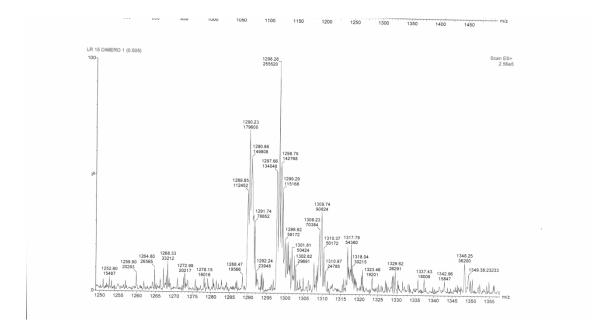

C.I. MS spectra of Compound 3

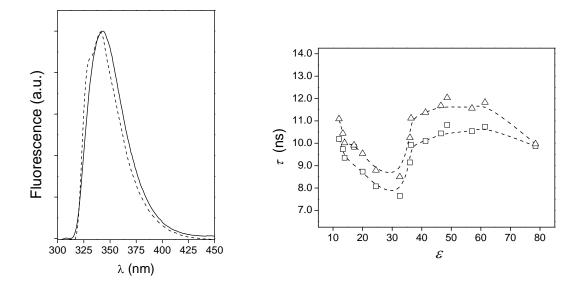

¹H NMR spectra (300 MHz in DMSO- d_6) of compound 4

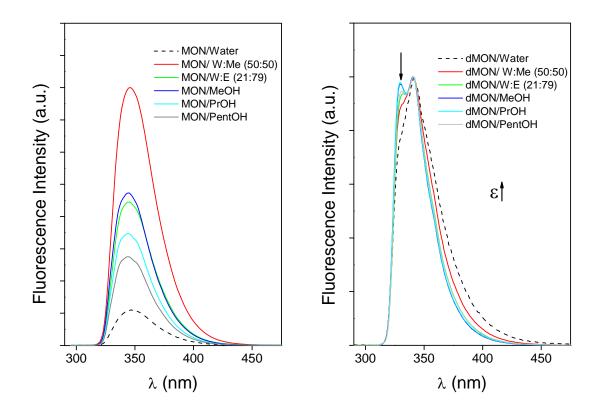

 13 C NMR spectra (75 MHz in DMSO- d_6) of compound 4

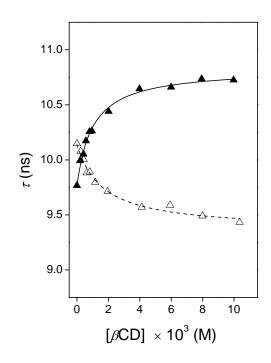

HSQC spectra (300 MHz for ${}^{1}\text{H} - {}^{13}\text{C}$ in DMSO- d_{δ}) of Compound 4


C.I. MS spectra of Compound 4


¹H NMR spectra (300 MHz in DMSO- d_6) of compound **5**


 13 C NMR spectra (75 MHz in DMSO- d_6) of compound **5**


HSQC spectra (300 MHz for ${}^{1}\text{H} - {}^{13}\text{C}$ in DMSO- d_6) of Compound 5


C.I. MS spectra of Compound 5

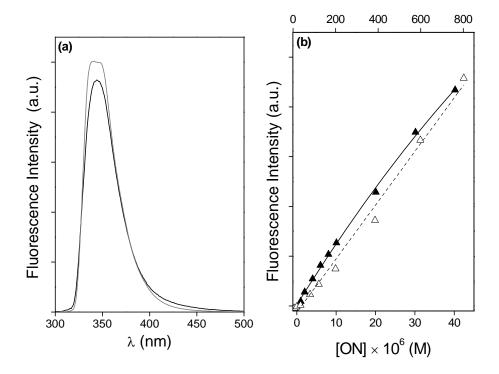
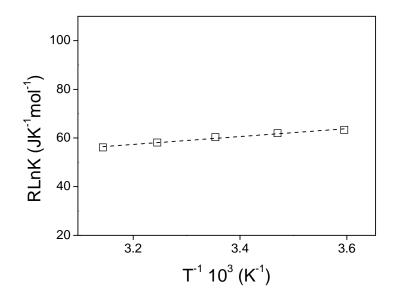
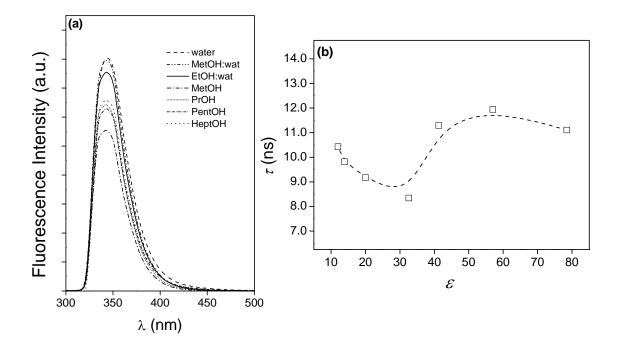

Figure 1S. (left) Emission spectra for MON and dMON (dashed) in water at 25°C, (right) Lifetime as a function of solvent polarity, ε , for model compounds MON (\Box) and dMON (Δ) at 25°C in linear water *n*-alcohols from methanol to *n*-heptanol and some methanol and ethanol:water mixtures.

Figure 2S. Emission spectra for MON (left) and dMON (right) in some solvents of different polarities at 25°C. Spectra for dMON were normalized at the maximum of the low energy emission band. Intensity of the high energy band significantly decreases with the polarity of the solvent.

Figure 3S. Lifetime variation with [β CD] at 25 °C for MON (\blacktriangle) and dMON (\triangle). [β CD] were 0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0 y 10×10⁻³ M and 0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.1, 5.9, 8.0 y 10×10⁻³ M respectively. Chromophore concentrations were fixed at 10⁻⁵ M.

Figure 4S. (a) Emission spectra for *mono*-N β CD (—) and *bis*-N β CD (—) aqueous solutions of concentrations 1.0×10^{-6} M and 0.6×10^{-6} M respectively upon excitation of 285 nm at 25°C; **(b)** Corrected fluorescence intensity using equation 2 as a function of the concentration of naphthoxy or binaphthoxy groups. Concentrations were 1, 2, 4, 6, 8, 10, 20, 30 y 40×10⁻⁶ M for *mono*-N β CD (**(**) and 6, 17, 35, 80,121, 200, 385, 599 y 802×10^{-6} M for *bis*-N β CD (**(**).

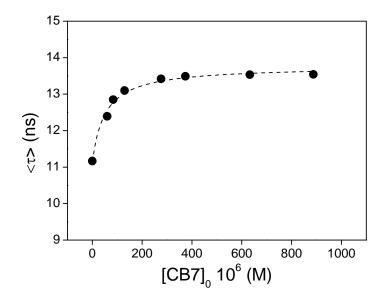

Figure 5S. van't Hoff plot for the *mono*-N β CD heteroassociation with β CD.

Table 1S. Binding constants for the *mono*-N β CD heteroassociation with β CD at different temperatures

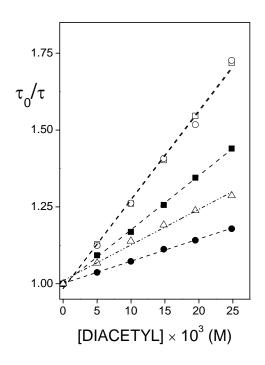

T (°C)	K (M ⁻¹)
5	2020 ± 350
15	1730 ± 300
25	1410 ± 100
35	1080 ± 110
45	850 ± 45

Figura 6S. (a) Emission spectra and **(b)** lifetimes, τ , for dilute solutions of *mono*-N β CD in different *n*-alcohols (methanol, *n*-propanol, *n*-penthanol y *n*-hepthanol) and methanol:water (50%) and ethanol:water (79 %) (v/v) mixtures as a function of the medium dielectric permitivity, ε at 25 °C.

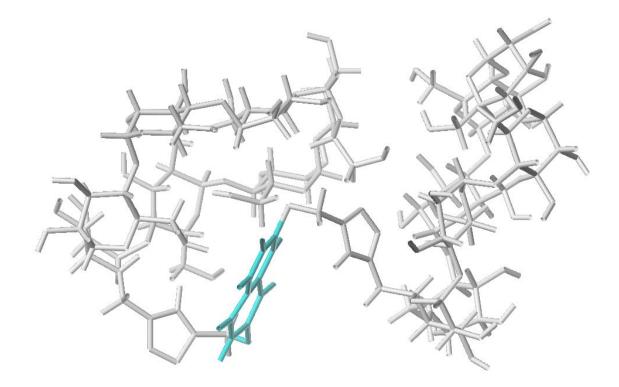

Figure 7S. Weighted average fluorescence lifetime, $<\tau>$ variation with CB7 concentration at 25 °C. [*mono*-N β CD] was 1.4×10⁻⁵ M.

Figura 8S. Stern-Volmer plots obtained from fluorescence lifetime measurements on aqueous MON (\Box), dMON (\bigcirc), *mono*-N β CD (\blacksquare) and *bis*-N β CD (\bigcirc) solutions at 10⁻⁵ M concentration and *mono*-N β CD (\triangle) at 8×10⁻⁵ M concentration.

Table 2S. Geometrical parameters, the averages of some distances and angles between transition moments and the CD main axis, from the analysis of the MD trajectories on *mono-* and *bis*-N β CDs. The probabilities of finding angles smaller than 54.7° for different transitions appear in bold and in parentheses. The values for energy conformation minima appear simply between parentheses.

Parameter	<i>mono</i> -NβCD	bis-NβCD
Distance (Å)		
CD1–CD2		13.2 ± 2.6 (12.2)
CD ₁ -dON	9.6 ± 2.2 (6.7)	9.2 ± 2.2 (10.9)
CD ₂ -dON		9.4 ± 1.8 (6.5)
Tri ₁ -dON	6.0 ± 0.9 (5.6)	5.8 ± 0.9 (5.3)
Tri ₂ -dON		6.1 ± 1.0 (5.2)
$CD_{main axis}$ – Transition (ိ)	
CD_1 -dON (¹ L _a)	84 ± 31 (119) (0.01)	89 ± 33 (77) (0.21)
CD_1 -dON (¹ B _b)	92 ± 22 (67) (0.01)	92 ± 20 (104) (0.04)
CD_2 -dON (¹ L _a)		87 ± 28 (54) (0.15)
CD_2 -dON (¹ B _b)		94 ± 23 (111) (0.06)

Figure 9S. Minimum binding energy structure for *bis*NβCD obtained from the analysis of the MD trajectory.

Table 3S. Averages for several distances, angles between naphthoate ON group transition moments and the main β CD axis for each CD, as well as binding energies and contributions obtained from the analysis of the 2ns MD trajectories in TH and TT arrangements of the non-covalent (*mono*-N β CD)₂ dimers. Values for the minima binding energy structures are found in parentheses.

Parameter	TH (axial)	TT (axial)
Distance (Å)		
CD ₁ –CD ₂	13.0 ± 2.8	10.9 ± 0.3 (9.9)
CD ₁ –ON ₂	7.9 ± 3.0	1.0 ± 0.3 (1.2)
CD_2 - ON_1	18.3 ± 1.9	2.6 ± 0.3 (1.6)
TRI ₂ –ON ₁	15.5 ± 2.1	4.5 ± 0.4 (3.7)
TRI ₁ –ON ₂	9.2 ± 0.6	6.1 ± 0.3 (6.1)
ON ₂ -ON ₁	13.1 ± 1.4	9.4 ± 0.4 (9.6)
CD _{axis} –transition a	ngle (°)	
$CD_1 - ON_2 (^1B_b)$		$10 \pm 6 (14)$
CD_1 – ON_2 (1L_a)		97 ± 7 (96)
$CD_2 - ON_1 (^1B_b)$		31 ± 8 (13)
$CD_2-ON_1 (^1L_a)$		72 ± 8 (81)
Binding Energy (k.	Jmol ⁻¹)	
Tatal	-37.7 ± 24.0	-175.39 ± 13.6
Total	(-104.9)	(-225.9)
Electrostatic	-1.6 ± 1.7	-7.1 ± 1.8
	(-6.5)	(-5.8)
van der Waals	-36.2 ± 22.7	-168.2 ± 13.7
	(-98.3)	(-219.1)