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General Synthesis Protocols

Reactions were monitored by TLC on Merck 60 F254 (0.25 mm) plates, which were
visualized by UV inspection and/or by heating after being sprayed with
phosphomolybdic acid.

Reactions under combined MW/US irradiation were performed in a professional
multimode oven, (Microsynth, Milestone), operating at 2.45 GHz, equipped with a
high-power pyrex” US probe (20.5 kHz working frequency) and the temperature was
strictly monitored by a fiber optic thermometer inside the reaction vessel.
Flash-chromatography purifications were performed on CombiFlash Rf (Teledyne
ISCO), an automatic device with auto injection, fractions collector and UV detector.

IR spectra were recorded with a Shimadzu FT-IR 8001 spectrophotometer.

NMR spectra were recorded on a Bruker 300 Avance (300 MHz and 75 MHz for 'H and
1C, respectively) at 25°C; chemical shifts were calibrated to residual proton and carbon
resonances of the solvents, viz. CDCl; (0y = 7.27, 6¢c = 77.16) and DMSO-ds (o = 2.50,
d¢ = 39.52). Chemical shifts (8) are given in ppm and coupling constants (J) in Hz.
Low-resolution mass spectra were recorded on a Finnigan-MAT TSQ70 in electron
impact (EI) and chemical ionization (CI) with isobutane as reactant gas; ESI-mass

spectra were recorded on a Waters Micromass ZQ equipped with ESI source.



Scheme 1. Synthesis of B-CD (naphthyloxy)methyl triazolyl asymmetric derivative (2,
mono-NBCD).

Reagents and conditions: a) K,COs, acetone, 70°C (rfx); b) Cu powder, MW/US,
100°C, 1.5 h, DMF.

Synthesis of B-propargyloxynaphthalene (1)

In a two-necked round-bottomed flask (50 ml), 400 mg of B-naphthol (2.78 mmol, 1 eq)
was dissolved in 10 ml of acetone and 1.53 g of K,CO3 (11.12 mmol, 4 eq) was added
to the solution. The mixture was kept at 70°C for 30 min under magnetical stirring.
Subsequently 360 pl of propargyl bromide (3.34 mmol, 1.2 eq) was added and the
reaction was left at 70°C for 4 h.

Acetone was removed under vacuum. The crude product was extracted with CH,Cl,,
dried under vacuum and purified on silica gel (flash chromatography) using a
PE/EtOAc gradient. 325.1 mg of pure B-propargyloxynaphthalene was obtained (1.785
mmol, 64%).

Yellow powder. Rf = 0.63 (PE/EtOAc 8:2).

IR (KBr, cm™): v 3283, 3050, 2120 (alkyne), 1632, 1599, 1472, 1354, 1252, 1174,
1013, 837, 749, 687, 664, 478.

'H NMR (CDCls, 300 MHz): & 7.81-7.76 (overlapped signals, 3H, H-1,5.8), 7.47 (t, J =
7.5 Hz, 1H, H-6), 7.37 (t,J = 7.5 Hz, 1H, H-7), 7.22 (d, J=2.7 Hz, 1H, H-3), 7.19 (d, J
=2.7Hz, 1H, H-4), 4.83 (d, J = 2.4 Hz, 2H, O-CH,C=CH), 2.50 (t, J =2.4 Hz, 1H, O-
CH,C=CH).



13C NMR (CDCls, 75 MHz): § 155.5 (C-2), 134.4 (C-8'), 129.7 (C-5), 129.4 (C-4"),
127.8 (C-1), 127.1 (C-8), 126.6 (C-6), 124.2 (C-7), 118.8 (C-4), 107.6 (C-3), 78.6 (O-
CH,C=CH), 75.8 (O-CH,C=CH), 55.9 (O-CH,C=CH).

CI-MS (m/z, %) = 183 (100%) [M + H]".

Synthesis of 6'-deoxy-6'-(4-((2-naphthyloxy)methyl)-1H-1,2,3-triazol-1-yl)-B-CD (2,
mono-NBCD).

In a three-necked pear-shaped reaction vessel (100 ml), 200 mg of 6'-azido-6'-deoxy-p-
CD (0.172 mmol, 1 eq) and 126 mg of B-propargyloxynaphthalene (0.690 mmol, 4 eq)
were dissolved in 10 ml of DMF and 100 mg of Cu powder was added to the solution.
The reaction was carried out under combined MW/US irradiation at 100°C for 1.5 h
(power of 100 W for MW, 35 W for US). The reaction outcome was monitored by TLC
(iPrOH/H,O/EtOAc/NH4OH = 5:3:1:1).

The copper was filtered off on filter paper. After evaporation of DMF under vacuum,
the crude product was crystallized in a water/acetone mixture and then purified on RP18
(flash-chromatography) using a H,O/MeOH gradient. 173 mg of pure product was
obtained (0.129 mmol, 75%).

White powder. Rf = 0.77 (iPrOH/H,O/EtOAc/NH4OH = 5:3:1:1).

IR (KBr, cm™): v 3400, 3283, 2926, 1632, 1510, 1213, 1155, 1078, 1028, 837, 478.

'H NMR (DMSO-dg, 300 MHz): & 8.23 (s, 1H, H-5 Tz), 7.85-7.79 (overlapped signals,
3H, H-1,5,8 Npth), 7.50-7.17 (overlapped signals, 4H, H-7,6,4,3 Npth), 5.92-5.68
(overlapped signals, 14H, 2,3-OH), 5.22 (s, 4H, Tz-CH,-O-Npth), 5.05 (s, 1H, H-1"),
4.96 (m, 1H, H-6'ab), 4.90-4.72 (m, 6H, H-1), 4.61 (m, 1H, H-6'ab), 4.59-4.31
(overlapped signals, 6H, 6-OH), 4.01 (m, 1H, H-5"), 3.82-3.49 (overlapped signals, 23H,
H-3,5,6), 3.45-3.24 (overlapped signals, 14H, H-2,4), 3.14 (brm, 1H, H-6"ab), 2.88

(brm, 1H, H-6"ab).



PC NMR (DMSO-ds, 75 MHz): 8 156.1 (C-2 Npth), 142.4 (C-4 Tz), 134.2 (C-8' Npth),
129.4 (C-5 Npth), 129.3 (C-4' Npth), 128.6 (C-1 Npth), 127.5,126.8 (C-8,6 Npth), 126.4
(C-7 Npth), 125.6 (C-5 Tz), 118.7 (C-4 Npth), 107.1 (C-3 Npth), 102.3, 102.0, 101.9
(C-1), 83.5, 82.1 81.6, 81.5, 81.4, 81.0 (C-4), 73.2, 72.4, 72.3, 72.1, 71.8, 70.0 (C-
2,3,5), 70.9 (C-5"), 61.0 (Tz-CH,-O-Naf), 60.2, 60.0, 59.9 (C-6), 55.5 (C-6").

ESI-MS (m/z, %) calc. for CssHgoN3O35 [M + H]Jr 1343.21, found 1342.87 (25%); for
CssH7o0N3035Na [M + Na]" 1364.44, found 1364.81 (100%); for CssH7oN3;035K [M +

K]" 1380.55, found 1380.78 (35%).



Scheme 2. Synthesis of 2,7-bis-((1-(6'-deoxy-p-CD-6'"-y1)-1H-1,2,3-triazol-4-
yl)methoxy)naphthalene (5, bis-NBCD).

Reagents and conditions: a) K,COs, acetone, 70°C (rfx); b) Cu powder, MW/US,
100°C, 1.5 h, DMF; ¢) 6'-azido-6'-deoxy-B-CD, Cu powder, MW/US, 100°C, 1.5 h,
DMF.
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Synthesis of 2,7-dipropargyloxynaphthalene (3)

In a two-necked round-bottomed flask (50 ml), 1 g of 2,7-dihydroxynaphtalene (6.24
mmol, 1 eq) was dissolved in 15 ml of acetone and 6.89 g of K,CO3 (49.9 mmol, 8 eq)
was added to the solution. The mixture was kept at 70°C for 30 min under magnetical
stirring. Subsequently 1.62 ml of propargyl bromide (14.98 mmol, 2.4 eq) was added
and the reaction was left at 70°C for 20 h.

The acetone was removed under vacuum. The crude product was extracted with CH,Cl,,
dried under vacuum and purified on silica gel (flash chromatography) using a
PE/EtOAc gradient. 865 mg of pure 2,7-dipropargyloxynaphthalene was obtained (3.66
mmol, 59%).

Yellow powder. Rf = 0.59 (PE/EtOAc 8:2).

IR (KBr, cm™): v 3293, 2132 (alkyne), 1626, 1514, 1384, 1208, 1019, 839, 820, 685,
655, 628, 477.



"H NMR (CDCls, 300 MHz): § 7.67 (d, J = 9 Hz, 2H, H-4,5), 7.18 (d, J = 2.4 Hz, 2H,
H-1,8), 7.08 (dd, J =9, 2.7 Hz, 2H, H-3,6), 4.81 (d, J = 2.4 Hz, 4H, O-CH,C=CH), 2.58
(t, J = 1.2 Hz, 2H, O-CH,C=CH).

C NMR (CDCls, 75 MHz): § 156.3 (C-2,7), 135.5 (C-8"), 129.5 (C-4,5), 125.2 (C-4"),
116.7 (C-3,6), 107.1 (C-1,8), 78.6 (O-CH,C=CH), 75.8 (O-CH,C=CH), 55.9 (O-
CH,C=CH).

CI-MS (m/z, %) = 237 (100%) [M + H]".

Synthesis of 6I-de0xy-6l-(4-((7-propargyloxynaphthalen-2-yloxy)methyl)-1H-1,2,3-
triazol-1-yl)-p-CD (4)

In a three-necked pear-shaped reaction vessel (100 ml), 400 mg of 6'-azido-6'-deoxy-p-
CD (0.345 mmol, 1 eq) and 244 mg of 2,7-dipropargyloxynaphtalene (1.033 mmol, 3
eq) were dissolved in 10 ml of DMF and afterwards 200 mg of Cu powder were added
to the solution.

The reaction was carried out under combined MW/US irradiation at 100°C for 1.5 h
(power of 100 W for MW, 35 W for US). The reaction outcome was monitored by TLC
(iPrOH/H,O/EtOAc/NH4OH = 5:3:1:1).

The copper was filtered off on filter paper. After the evaporation of DMF under
vacuum, the crude product was crystallized in water/acetone and then purified on RP18
(flash-chromatography) using a H,O/MeOH gradient. 458.4 mg of pure monomeric
product (4, 0.328 mmol, 76%) and 70 mg of pure dimeric product (5, 0.0274 mmol,
13%) were obtained.
6'-deoxy-6'-(4-((7-propargyloxynaphthalen-2-yloxy)methyl)-1H-1,2,3-triazol-1-y1)-p-
CD (4) White powder. Rf = 0.43 (iPrOH/H,O/EtOAc/NH4OH = 5:3:1:1).

IR (KBr, cm™): v 3375, 2926, 1633, 1516, 1157, 1080, 1028, 754, 704, 581.

'H NMR (DMSO-ds, 300 MHz): & 8.21 (s, 1H, H-5 Tz), 7.76 (d, J = 8.1 Hz, 2H, H-4,5

Npth overlapped), 7.40 (s, 1H, H-8 Npth), 7.30 (s, 1H, H-1 Npth), 7.02 (d, J =9 Hz, 2H,



H-3,6 Npth overlapped), 5.90-5.70 (overlapped signals, 14H, 2,3-OH), 5.20 (s, 2H, H-1,
Tz-CH,-O-Npth), 5.05 (s, 1H, H-1), 4.96 (m, 1H, H-6'ab), 4.95 (s, 2H, H-1, CHC-CH,-
O-Npth), 4.90-4.79 (m, 6H, H-1), 4.64 (m, 1H, H-6"ab), 4.59-4.34 (overlapped signals,
6H, 6-OH), 4.01 (m, 1H, H-5"), 3.64-3.50 (overlapped signals, 23H, H-3,5,6), 3.48-3.25
(overlapped signals, 14H, H-2,4), 3.15 (brm, 1H, H-6"ab), 2.91 (brm, 1H, H-6"ab).

BC NMR (DMSO-ds, 75 MHz): 8 156.8,155.7 (C-2,7 Npth), 142.4 (C-4 Tz), 135.5 (C-
8' Npth), 129.2, 129.19 (C-4,5 Npth), 125.7 (C-5 Tz), 124.2 (C-4' Npth), 116.5, 115.9
(C-3,6 Npth), 107.0 (C-8 Npth), 106.6 (C-1 Npth), 102.2, 102.0, 101.9, 101.3 (C-1),
83.5, 82.2, 81.5, 81.4, 81.1 (C-4), 79.3 (C-2 propargyl), 78.4 (C-3 propargyl), 73.2,
73.1, 73.0, 72.9, 72.7, 72.5, 72.4, 72.1, 71.8 (C-2,3,5), 70.0 (C-5"), 61.1 (Tz-CH»-O-
Npth), 60.2, 60.0, 59.9 (C-6), 55.5 (C-1 propargyl), 50.5 (C-6").

ESI-MS (m/z, %) calc. for CssHg,N3O36 [M + H]" 1397.27, found 1396.88 (40%); for
CssHgiNaN3O36 [M + Na]" 1418.45, found 1418.83 (100%); for CssHgKN3O36 [M +
K] 1434.56, found 1435.84 (50%).

Synthesis  of  2,7-bis-((1-(6'-deoxy-p-cyclodextrin-6'-yl)-1H-1,2,3-triazol-4-yl)
methoxy) naphthalene (5, bis-NBCD)

In order to increase the dimer yield, the same synthetic procedure described above was
repeated on 0.150 mg of 6'-azido-6'-deoxy-B-CD (0.129 mmol, 1 eq) and 180 mg of 6'-
deoxy-6'-(4-((7-propargyloxynaphthalen-2-yloxy)methyl)-1H-1,2,3-triazol-1-yl)-p-CD
(4, 0.129 mmol, 1 eq). It yielded 92 mg of 2,7-bis-((1-(6"-deoxy-p-cyclodextrin-6'-yl)-
1H-1,2,3-triazol-4-yl)methoxy)naphthalene (5, 0.036 mmol, 28%) after purification.
Yellow liquid. Rf = 0.14 (iPrOH/H,O/EtOAc/NH4OH = 5:3:1:1).

IR (KBr, cm™): v 3380, 2924, 1640, 1516, 1159, 1080, 1026, 754, 841, 560.

'H NMR (DMSO-ds, 300 MHz): & 8.22 (s, 2H, H-5 Tz), 7.75 (d, J = 9 Hz, 2H, H-4,5

Npth), 7.44 (d, J = 17.1 Hz, 2H, H-1,8 Npth), 7.04 (d, J = 9 Hz, 2H, H-3,6 Npth), 5.90-
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5.60 (overlapped signals, 28H, 2,3-OH), 5.20 (s, 4H, Tz-CH,-O-Npth), 5.06 (s, 2H, H-
1), 4.95 (m, 2H, H-6'ab), 4.90-4.72 (m, 12H, H-1), 4.62 (m, 2H, H-6'ab), 4.56-4.41
(overlapped signals, 12H, 6-OH), 4.01 (m, 2H, H-5"), 3.88-3.56 (overlapped signals,
46H, H-3,5,6), 3.47-3.22 (overlapped signals, 28H, H-2,4), 3.18 (brm, 2H, H-6"ab),
2.92 (brm, 2H, H-6"ab).

BC NMR (DMSO-ds, 75 MHz): & 156.7 (C-2,7 Npth), 142.4 (C-4 Tz), 129.6 (C-4,5
Npth), 124.1 (C-4’,8’Npth), 126.1 (C-5 Tz), 116.2 (C-3,6 Npth), 106.6 (C-1,8 Npth),
102.2, 102.0, 101.3 (C-1), 83.5, 82.0, 81.5, 81.4, 81.1 (C-4), 73.2, 73.1, 73.0, 72.9, 72.7,
72.4, 72.1, 71.8 (C-2.,3,5), 70.0 (C-5"), 61.0 (Tz-CH,-O-Npth), 60.0, 59.9, 59.1 (C-6),
50.4 (C-6").

ESI-MS (m/z, %) calc. for Cjo0H;5:1NsO7Na [M + H + Na]2+ 1290.12, found 1290.23

(70%); for C100H151N6070K [M +H+ K]2+ 1298.18, found 1298.26 (100%).
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Figure 18S. (left) Emission spectra for MON and dMON (dashed) in water at 25°C,
(right) Lifetime as a function of solvent polarity, & for model compounds MON (L)
and dAMON (A) at 25°C in linear water n-alcohols from methanol to n-heptanol and

some methanol and ethanol:water mixtures.
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Figure 2S. Emission spectra for MON (left) and dMON (right) in some solvents of
different polarities at 25°C. Spectra for AIMON were normalized at the maximum of the
low energy emission band. Intensity of the high energy band significantly decreases
with the polarity of the solvent.
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Figure 3S. Lifetime variation with [BCD] at 25 °C for MON (A) and dMON (A).
[BCD] were 0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0 y 10x10” M and 0, 0.2, 0.4, 0.6,

0.8, 1.0,2.0,4.1,59,80y 10x10> M respectively. Chromophore concentrations were
fixed at 10° M.
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Figure 4S. (a) Emission spectra for mono-NBCD (—) and bis-NBCD (-) aqueous
solutions of concentrations 1.0x10° M and 0.6x10° M respectively upon excitation of
285 nm at 25°C; (b) Corrected fluorescence intensity using equation 2 as a function of
the concentration of naphthoxy or binaphthoxy groups. Concentrations were 1, 2, 4, 6,
8, 10, 20, 30 y 40x10® M for mono-NBCD (A) and 6, 17, 35, 80,121, 200, 385, 599 y
802x10°° M for bis-NBPCD (A).
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Figure 5S. van’t Hoff plot for the mono-NBCD heteroassociation with BCD.

Table 1S. Binding constants for the mono-NBCD heteroassociation with BCD at

different temperatures

T (°C) K (M)
5 2020 + 350
15 1730 + 300
25 1410 £ 100
35 1080+ 110
45 850 £ 45
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Figura 6S. (a) Emission spectra and (b) lifetimes, z, for dilute solutions of mono-NSCD
in different n-alcohols (methanol, n-propanol, n-penthanol y n-hepthanol) and
methanol:water (50%) and ethanol:water (79 %) (v/v) mixtures as a function of the

medium dielectric permitivity, & at 25 °C.
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Figure 7S. Weighted average fluorescence lifetime, <7 > variation with CB7
concentration at 25 °C. [mono-NPCD] was 1.4x10” M.
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Figura 8S. Stern-Volmer plots obtained from fluorescence lifetime measurements on
aqueous MON ([J), dMON (O), mono-NBCD (M) and bis-NBCD (@) solutions at 10”

M concentration and mono-NBCD (A) at 8x10” M concentration.
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Table 2S. Geometrical parameters, the averages of some distances and angles between
transition moments and the CD main axis, from the analysis of the MD trajectories on
mono- and bis-NBCDs. The probabilities of finding angles smaller than 54.7° for
different transitions appear in bold and in parentheses. The values for energy
conformation minima appear simply between parentheses.

Parameter mono-NBCD bis-NBCD
Distance (A)

CD1-CD2 --- 13.2+£2.6 (12.2)
CD,—dON 9.6+2.2(6.7) 9.2+22(10.9)
CD,—dON --- 9.4+1.8(6.5)
Tri;—dON 6.0+ 0.9 (5.6) 5.8+0.9(5.3)
Tri,—dON 6.1+1.0(5.2)

CD main axis — Transition (°)

CD,—dON ('L,) 84 + 31 (119) (0.01) 89 + 33 (77) (0.21)
CD;—dON ('By) 92 + 22 (67) (0.01) 92 + 20 (104) (0.04)
CD>—dON ('L,) 87 + 28 (54) (0.15)
CD>—dON ('By) 94 + 23 (111) (0.06)
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Figure 9S. Minimum binding energy structure for biSNBCD obtained from the analysis
of the MD trajectory.
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Table 3S. Averages for several distances, angles between naphthoate ON group
transition moments and the main BCD axis for each CD, as well as binding energies and
contributions obtained from the analysis of the 2ns MD trajectories in TH and TT
arrangements of the non-covalent (mono-NBCD), dimers. Values for the minima binding
energy structures are found in parentheses.

Parameter TH (axial) TT (axial)
Distance (A)

CD,—CD;, 13.0£2.8 10.9+0.3(9.9)
CD;—ON;, 79+3.0 1.0+0.3(1.2)
CD,-ON; 183+1.9 2.6+0.3(1.6)
TRI,—ON, 15.5+2.1 4.5+0.4(3.7)
TRI;—ON;, 9.2+0.6 6.1£0.3(6.1)
ON,-ON; 13.1+14 9.4+0.4(9.6)

CD,,is—transition angle (°)

CD;-ON; ('By) 10+ 6 (14)
CD;—-ON; ('L,) 97 + 7 (96)
CD,-ON; ('By) 31+8(13)
CD,-ON; ('L,) 72+ 8 (81)

Binding Energy (kJmol™)

—37.7+£24.0 —-175.39+13.6
Total

(-104.9) (-225.9)

-1.6+1.7 -7.1+1.8
Electrostatic

(-6.5) (-5.8)

-36.2+22.7 —-1682+13.7
van der Waals

(-98.3) (-219.1)
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