New Journal of Chemistry

RSCPublishing

ARTICLE

Supporting Information to:

Solution thermodynamics, computational and relaxometric studies of ditopic DO3A-based Mn(II) complexes

Roberto Artali,^a Zsolt Baranyai,^b Mauro Botta,^{c,*} Giovanni B. Giovenzana,^{d,*} Angelo Maspero,^e Roberto Negri,^d Giovanni Palmisano,^e Massimo Sisti^e and Stefano Tollari^e

^a Scientia Advice srl, Via Ferraris 28, 20851 Lissone (MI), Italy

^b Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen. Egyetem tér 1., Hungary.

^c Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.

^d Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "Amedeo Avogadro", Largo Donegani 2/3, 28100 Novara, Italy

^e Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Via Valleggio 11, 22100 Como (Italy)

Protonation and complexation equilibria

The protonation constants of ligands, defined by Equation (1):

$$K_{i}^{H} = \frac{[H_{i}L]}{[H_{i-1}L][H^{+}]}$$
(1)

where i=1, 2...8, The protonation constants of ligands of **L1** have also been investigated with ¹H-NMR titrations by recording the chemical shift of the non-labile protons as a function of pH. The ¹H-NMR titration and the fits of the experimental data points are shown in Figure S1.

Figure S1. ¹H-NMR spectrum at pH=12.02 and ¹H-NMR titration curve of L1 ligand.

(a (▲); b,d (♦); c (×); e (●) and f(■); 400 MHz, 0.1 M KCl, 25°C)

The ¹H-NMR titration curve displays sharp changes at different pH values, which are related to the protonation of the ligand. Since the protonation/deprotonation of the different donor atoms is generally fast process on the NMR time scale, the chemical shifts of the observed signals represent a weighted average of the shifts of the different species involved in a specific protonation step (Eq. 2) [Pagado, J. M.; Goldberg, D. E.; Fernelius, W. C., *J. Phys. Chem.*, 1961, **65**, 1062]:

$$\delta_{H(obs)} = \sum x_i \delta_H^{H_i L} \tag{2}$$

where, $\delta_{H(obs)}$ is the observed chemical shift of a given signal, x_i and $\delta_H^{H_iL}$ are the molar fraction and the chemical shift of the involved species, respectively. The observed chemical shifts have been fitted with Eq. 2 (the molar fractions x_i of the different protonated species are expressed with the use of the protonation constants K_i^H).

The protonation and stability constants of the Mn(II)-complexes formed with L1 and L2 ligands have been calculated from the titration curves obtained at 1:1 and 2:1 metal to ligand concentration ratios. The best fitting was obtained by using the model which includes the formation of *MnL*, *MnHL*, *MnH2L*, *MnH4L*, *MnH4L*, *Mn2L*, *Mn2H1L* and *Mn2H2L* species. The stability and protonation constants of the metal complexes formed with L1 and L2 ligands have been defined by Equations (3) - (6).

$$K_{\rm MnL} = \frac{[{\rm MnL}]}{[{\rm Mn}^{2+}][{\rm L}]}$$
(3)

$$K_{\rm MnH_{i}L} = \frac{[{\rm M}\,{\rm nH_{i}}\,{\rm L}]}{[{\rm M}\,{\rm nH_{i-1}}\,{\rm L}][{\rm H^{+}}]} \tag{4}$$

$$K_{Mn_{2}L} = \frac{[Mn_{2}L]}{[MnL][Mn^{2^{+}}]}$$
(5)

$$K_{Mn_{2}H_{i}L} = \frac{[Mn_{2}H_{i}L]}{[Mn_{2}H_{i,1}L][H^{+}]}$$
(6)

where i=1, 2, ...4. The pH-potentiometric titration curves of the H₆L1, H₆L2 ligands and Mn(II)-L1, Mn(II)-L2 systems are shown in Figure S2 and S3.

Figure S2. Titration curve of the H₆L1 ligand in the absence (1) and in the presence of one (2) and two (3) equivalent of Mn(II). ([H₆L1]=2.0 mM (1); [H₆L1]=[Mn²⁺]=2.0 mM (2); [H₆L1]=2.0 mM, [Mn²⁺]=4.0 mM (3); [HCl]=0.014 M, 0.1 M KCl, 25°C).

Figure S3. Titration curve of the H₆L2 ligand in the absence (1) and in the presence of one (2) and two (3) equivalent of Mn(II). ([H₆L2]=2.0 mM (1); [H₆L2]=[Mn²⁺]=2.0 mM (2); [H₆L2]=2.0 mM, [Mn²⁺]=4.0 mM (3); [HCl]=0.014 M, 0.1 M KCl, 25°C).

Figure S4. The relaxivity (r_{1p}) values of the Mn₂L1 - Zn²⁺ reacting system as a function of time. ([Mn₂L1]=0.5 mM; [Zn²⁺]=10 mM, pH=4.6, [*N*,*N*-dimethyl-piperazine]=0.01 M, 20 MHz, 0.1 M KCl, 25°C).

Figure S5. Species distribution and relaxivity values of the Mn(II) - DOTA system as a function of pH ([Mn²⁺]=[DOTA]=1.0 mM, 0.1 M KCl, 20 MHz, 25°C)

Figure S6. Species distribution and relaxivity values of the Mn(II) - DO3A system as a function of pH ([Mn²⁺]=[DO3A]=1.0 mM, 0.1 M KCl, 20 MHz, 25°C)

Figure S7. Relaxivity values of the Mn²⁺ - L1 (A) and Mn²⁺ - L2 (B) systems as a function of [Mn²⁺]/[L] ([Mn²⁺]=[L]=1.0 mM, pH=6.5, 0.1 M KCl, 20 MHz, 25°C)