Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Electronic Supplementary Information (ESI) for New Journal of Chemistry

Electronic Supplementary Information

A mononuclear cobalt(III) complex and its catecholase activity

Merry Mitra,^a Pallepogu Raghavaiah^{b,c} and Rajarshi Ghosh*^a

^a Department of Chemistry, The University of Burdwan, Burdwan 713 104, India. Fax: +91-342-2530452; Tel: +91 342 2533913 ext: 424; E-mail: rajarshi_chem@yahoo.co.in.

^b School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
^c Present address: Department of Chemistry, Dr. Harisingh Gour University, Sagar 470 003, India

To be published in New Journal of Chemistry

Contents

Fig. S1	χT vs. T plot of complex 1 showing diamagnetic behaviour
Fig. S2	¹ H NMR spectrum of 3,5-DTBQ in CDCl ₃
Fig. S3	A plot of the difference in absorbance (ΔA) vs time to evaluate the initial rate of the catalysis by 1 in methanol
Fig. S4	A plot of the difference in absorbance (ΔA) vs time to evaluate the initial rate of the catalysis by 1 in acetonitrile
Fig. S5	Plot of rate vs. [substrate] in presence of 1 in MeOH; inset: Lineweaver-Burk plot
Fig. S6	Plot of rate vs. [substrate] in presence of 1 in MeCN; inset: Lineweaver-Burk plot
Fig. S7	Rate plot showing two-step mechanistic pathway of the catalytic process
Fig. S8	ESI-MS spectrum of a 1:100 mixture of 1 and 3,5-DTBC in methanol
S1	Spectrophotometric detection of H_2O_2 in the oxidation reaction
S2	Spectrophotometric determination of concentration of O ₂

Fig. S1 χ T vs. T plot of complex **1** showing diamagnetic behaviour.

Fig. S2 ¹H NMR spectrum of 3,5-DTBQ in CDCl₃.

Fig. S3 A plot of the difference in absorbance (ΔA) vs time to evaluate the initial rate of the catalysis by **1** in MeOH.

Fig. S4 A plot of the difference in absorbance (ΔA) vs time to evaluate the initial rate of the catalysis by **1** in MeCN.

Fig. S5 Plot of rate vs. [substrate] in presence of 1 in MeOH; inset: Lineweaver-Burk plot.

Fig. S6 Plot of rate vs. [substrate] in presence of 1 in MeCN; inset: Lineweaver-Burk plot.

Fig. S7 Rate plot showing two-step mechanistic pathway of the catalytic process.

Fig. S8 ESI-MS spectrum of a 1:100 mixture of **1** and 3,5-DTBC in MeOH.

S1. Spectrophotometric detection of H₂O₂ in the oxidation reaction¹⁹

Reaction mixtures were prepared as in the kinetic experiments. After 1 h of reaction an equal volume of water was added and the quinone formed was extracted three times with dichloromethane. The aqueous layer was acidified with H₂SO₄ to pH =2 to stop further oxidation, and 1 mL of a 10% solution of KI and three drops of 3% solution of ammonium molybdate were added. In the presence of hydrogen peroxide occurs the reaction H₂O₂ + 2 Γ + 2H⁺ \rightarrow 2H₂O + I₂, and with an excess of iodide ions, the triiodide ion is formed according to the reaction I₂(aq) + Γ \Longrightarrow I³⁻. The formation of I³⁻ was monitored spectrophotometrically due to the development of the characteristic I³⁻ band (λ = 353 nm, ε = 26000 M⁻¹ cm⁻¹).

S2. Spectrophotometric determination of concentration of O₂

Spectrophotometrically we have determined the absorbance of I^{3-} to be 1.797. Therefore, its concentration is 6.9115×10^{-5} (M). From the above equations, discussed in **S1**,

1 equivalent $I^{3-} = 1$ equivalent I_2 380.7 I^{3-} is equivalent to 253.8 I_2 Therefore, 6.9115×10^{-5} (M) I^{3-} is equivalent to 4.60766×10^{-5} (M) I_2

1 equivalent $I_2 = 1$ equivalent H_2O_2 253.8 I_2 is equivalent to 34.02 H_2O_2 Therefore, 4.60766 × 10⁻⁵ (M) I_2 is equivalent to 6.1762 × 10⁻⁶ (M) H_2O_2

1 equivalent $H_2O_2 = 1$ equivalent O_2 34.02 H_2O_2 is equivalent to 32.0 O_2 Therefore, 6.1762×10^{-6} (M) H_2O_2 is equivalent to 5.8095×10^{-6} (M) O_2