Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

ESI

A Pyrenesulfonyl imidazolium derivative as selective cyanide ion sensor in aqueous media

Ashwani Kumar, and Hong-Seok Kim*

Department of Applied Chemistry, Kyungpook National University, Daegu 702-701,

Republic of Korea

Corresponding author: Tel.:+82 53 9505588; fax: +82 53 9506594.

E-mail address: kimhs@knu.ac.kr

Table of Contents

1.	¹ H NMR of probe 1 in DMSO-d ₆ .	3-5
2.	¹³ C NMR of probe 1 in DMSO-d ₆ .	6
3.	HRMS of probe 1 .	7-8
4.	¹ H NMR of probe 2 in DMSO-d ₆ .	9-10
5.	¹³ C NMR of probe 2 in DMSO-d ₆ .	11-12
6.	HRMS of probe 2 .	13
7.	Fig. SI 1: UV-vis study of probe 1 (10 μ M, PBS -EtOH (5:95), pH = 7.4) on addition of different anions viz. F ⁻ , Cl ⁻ , Br ⁻ , l ⁻ , NO ₃ ⁻ , ClO ₄ ⁻ , HSO ₄ ⁻ , H ₂ PO ₄ ⁻ , HP ₂ O ₇ ³⁻ , AcO ⁻ , CN ⁻ .	14
	Fig. SI 2: UV-vis study of probe 2 (10 μ M, PBS -EtOH (5:95), pH = 7.4) on addition of different anions viz. F ⁻ , Cl ⁻ , Br ⁻ , l ⁻ , NO ₃ ⁻ , ClO ₄ ⁻ , HSO ₄ ⁻ , H ₂ PO ₄ ⁻ , HP ₂ O ₇ ³⁻ , AcO ⁻ , CN ⁻ .	
8.	Fig. SI 3: Fluorescence study of probe 1 (1 μ M, PBS -EtOH (5:95), pH = 7.4) on addition of different anions viz. F ⁻ , Cl ⁻ , Br ⁻ , l ⁻ , NO ₃ ⁻ , ClO ₄ ⁻ , HSO ₄ ⁻ , H ₂ PO ₄ ⁻ , HP ₂ O ₇ ³⁻ , AcO ⁻ , CN ⁻ -anions λ_{ex} = 336 nm, slit width 3, 3.	15
	Fig. SI 4: Fluorescence relative intensity bar diagram of probe 1 (1 μ M, PBS -	

1

EtOH (5:95), pH = 7.4) on addition of different anions viz. F⁻, Cl⁻, Br⁻, l⁻, NO₃⁻, ClO₄⁻, HSO₄⁻, H₂PO₄⁻, HP₂O₇³⁻, AcO⁻, CN⁻ -anions λ_{ex} = 336 nm, λ_{em} = 379 nm, slit width 3, 3.

9. Fig. SI 5: Fluorescence study of probe 2 (1 μ M, PBS -EtOH (5:95), pH = 7.4) on 16 addition of different anions viz. F⁻, Cl⁻, Br⁻, l⁻, NO₃⁻, ClO₄⁻, HSO₄⁻, H₂PO₄⁻, HP₂O₇³⁻, AcO⁻, CN⁻ -anions λ_{ex} = 336 nm, slit width 3,3.

Fig. SI 6: Fluorescence relative intensity bar diagram of probe **2** (1 μ M, PBS - EtOH (5:95), pH = 7.4) on addition of different anions viz. F⁻, Cl⁻, Br⁻, l⁻, NO₃⁻, ClO₄⁻, HSO₄⁻, H₂PO₄⁻, HP₂O₇³⁻, AcO⁻, CN⁻ -anions λ_{ex} = 336 nm, λ_{em} = 494 nm, slit width 3,3.

10. Fig. SI 7: Fluorescence titration of probe 1 (1 μ M, PBS -EtOH (5:95), pH = 7.4) 17 with CN⁻ ion, λ_{ex} = 336 nm, slit width 3, 3.

Fig. SI 8: The spectral fitting of the fluorescence titration data of probe **1** (1 μ M, PBS -EtOH (5:95), pH = 7.4) with CN⁻ ion, λ_{ex} = 336 nm, slit width 3, 3.

11. Fig. SI 9: Fluorescence titration of probe **2** (1 μ M, PBS -EtOH (5:95), pH = 7.4) 18 with CN⁻ ion, λ_{ex} = 336 nm, slit width 3, 3.

Fig. SI 10: The spectral fitting of the fluorescence titration data of probe **2** (1 μ M, PBS -EtOH (5:95), pH = 7.4) with CN⁻ ion, λ_{ex} = 336 nm, λ_{em} = 495 nm, slit width 3, 3.

- Fig. SI 11: Partial ¹H NMR spectra of probe 2 (i) and upon addition of 1 eq. of 19 TBACN, (ii), 2 eq. of TBACN, (iii), 3 eq. of TBACN, (iv) and only TBACN (v) in D₂O-CD₃CD₂OD (1:6).
- Fig. SI 12 13: Partial ¹H NMR spectra of probe 2 (i) and upon addition of 1 eq. 19-20 of TBACN, (ii), 2 eq. of TBACN, (iii), 3 eq. of TBACN, (iv) and only TBACN (v) in DMSO-d₆.
- Fig. SI 14 16: Partial ¹H NMR spectra of probe 1 (i) and upon addition of 1 eq. 20-21 of TBACN, (ii), 2 eq. of TBACN (iii), and only TBACN (iv) in DMSO-d₆.
- **15.** Fig. SI 17: "B3LYP/6-31G* calculated molecular orbitals of probe 1 and 1•CN⁻
 22

 complex and their energy differences."
- **16.** Fig. SI 18: "B3LYP/6-31G* calculated molecular orbitals of probe 2 and 2•2(CN⁻) 23

complex and their energy differences."

17. Fig. SI 19: Fluorescence ratiometric response (I_{495}/I_{379}) of probe **2** (1 μ M, PBS - 24. EtOH (5:95), pH = 7.4) with TBACN toward [CN⁻].

Fig. SI 20: Fluorescence ratiometric response (I_{379}/I_{495}) of probe **2** (1 μ M, PBS - EtOH (5:95), pH = 7.4) with TBACN toward [CN⁻].

¹H NMR of probe $\mathbf{1}$ in DMSO-d₆

¹H NMR of probe **1** aliphatic reigion in DMSO-d₆

 ^{13}C NMR of probe $\boldsymbol{1}$ in DMSO-d_6

HRMS of probe 1

HRMS of probe 1

¹H NMR of probe **2** in DMSO-d₆

¹H NMR of probe **2** (aliphatic reigion) in DMSO-d₆

¹³C NMR of probe **2** in DMSO-d₆

HRMS of probe 2

Fig. SI 1: UV-vis study of probe **1** (10 μ M, PBS -EtOH (5:95), pH = 7.4) on addition of different anions viz. F⁻, Cl⁻, Br⁻, l⁻, NO₃⁻, ClO₄⁻, HSO₄⁻, H₂PO₄⁻, HP₂O₇³⁻, AcO⁻, CN⁻.

Fig. SI 2: UV-vis study of probe **2** (10 μ M, PBS -EtOH (5:95), pH = 7.4) on addition of different anions viz. F⁻, Cl⁻, Br⁻, l⁻, NO₃⁻, ClO₄⁻, HSO₄⁻, H₂PO₄⁻, HP₂O₇³⁻, AcO⁻, CN⁻.

Fig. SI 3: Fluorescence study of probe **1** (1 μ M, PBS -EtOH (5:95), pH = 7.4) on addition of different anions viz. F⁻, Cl⁻, Br⁻, l⁻, NO₃⁻, ClO₄⁻, HSO₄⁻, H₂PO₄⁻, HP₂O₇³⁻, AcO⁻, CN⁻ -anions λ_{ex} = 336 nm, slit width 3, 3.

Fig. SI 4: Fluorescence relative intensity bar diagram of probe **1** (1 μ M, PBS -EtOH (5:95), pH = 7.4) on addition of different anions viz. F⁻, Cl⁻, Br⁻, l⁻, NO₃⁻, ClO₄⁻, HSO₄⁻, H₂PO₄⁻, HP₂O₇³⁻, AcO⁻, CN⁻ -anions λ_{ex} = 336 nm, λ_{em} = 379 nm, slit width 3, 3.

Fig. SI 5: Fluorescence study of probe **2** (1 μ M, PBS -EtOH (5:95), pH = 7.4) on addition of different anions viz. F⁻, Cl⁻, Br⁻, l⁻, NO₃⁻, ClO₄⁻, HSO₄⁻, H2O₇⁻, HP₂O₇³⁻, AcO⁻, CN⁻ -anions λ_{ex} = 336 nm, slit width 3,3.

Fig. SI 6: Fluorescence relative intensity bar diagram of probe **2** (1 μ M, PBS -EtOH (5:95), pH = 7.4) on addition of different anions viz. F⁻, Cl⁻, Br⁻, l⁻, NO₃⁻, ClO₄⁻, HSO₄⁻, H₂PO₄⁻, HP₂O₇³⁻, AcO⁻, CN⁻ -anions λ_{ex} = 336 nm, λ_{em} = 494 nm, slit width 3,3.

Fig. SI 7: Fluorescence titration of probe **1** (1 μ M, PBS -EtOH (5:95), pH = 7.4) with CN⁻ ion, λ_{ex} = 336 nm, slit width 3, 3.

Fig. SI 8: The spectral fitting of the fluorescence titration data of probe **1** (1 μ M, PBS -EtOH (5:95), pH = 7.4) with CN⁻ ion, λ_{ex} = 336 nm, slit width 3, 3.

Fig. SI 9: Fluorescence titration of probe **2** (1 μ M, PBS -EtOH (5:95), pH = 7.4) with CN⁻ ion, λ_{ex} = 336 nm, slit width 3, 3.

Fig. SI 10: The spectral fitting of the fluorescence titration data of probe **2** (1 μ M, PBS -EtOH (5:95), pH = 7.4) with CN⁻ ion, λ_{ex} = 336 nm, λ_{em} = 495 nm, slit width 3, 3.

Fig. SI 11: (i) Partial ¹H NMR spectra of probe **2**; and (ii) upon addition of 1 eq. of TBACN; (iii) 2 eq. of TBACN; (iv) 3 eq. of TBACN; and (v) only TBACN in $D_2O-CD_3CD_2OD$ (1:6).

Fig. SI 12: (i) Partial ¹H NMR spectra of probe **2**; and (ii) upon addition of 1 eq. of TBACN; (iii) 2 eq. of TBACN; (iv) 3 eq. of TBACN; and (v) only TBACN in DMSO-d₆.

Fig. SI 13: (i) Partial ¹H NMR spectra of probe **2**; and (ii) upon addition of 1 eq. of TBACN; (iii) 2 eq. of TBACN; (iv) 3 eq. of TBACN; and (v) only TBACN in DMSO-d₆.

Fig. SI 14: (i) Partial ¹H NMR spectra of probe **1**; and (ii) upon addition of 1 eq. of TBACN; (iii) 2 eq. of TBACN; and (iv) only TBACN in DMSO-d₆.

Fig. SI 15: (i) Partial ¹H NMR spectra of probe **1**; and (ii) upon addition of 1 eq. of TBACN; (iii) 2 eq. of TBACN; and (iv) only TBACN in DMSO-d₆.

Fig. SI 16: (i) Partial ¹H NMR spectra of probe **1**; and (ii) upon addition of 1 eq. of TBACN; (iii) 2 eq. of TBACN; and (iv) only TBACN in DMSO-d₆.

Fig. SI 17: "B3LYP/6-31G* calculated molecular orbitals of probe **1** and **1**•CN⁻ complex and their energy differences."

Fig. SI 18: "B3LYP/6-31G* calculated molecular orbitals of probe **2** and **2**•2(**CN**⁻) complex and their energy differences."

Fig. SI 19: Fluorescence ratiometric response (I_{495}/I_{379}) of probe **2** (1 μ M, PBS -EtOH (5:95), pH = 7.4) with TBACN toward [CN⁻].

Fig. SI 20: Fluorescence ratiometric response (I_{379}/I_{495}) of probe **2** (1 μ M, PBS -EtOH (5:95), pH = 7.4) with TBACN toward [CN⁻].