Supporting Information for

"Synthetic Strategies to Further-Functionalised Phosphate Primary Building Units (PBUs): Crystal Structures and Solid-state Aggregation Behavior in a Series of Para-halo, Formylphenyl, and Aminophenyl Substituted Monoaryl Phosphates"

Aijaz A. Dar,^[a] Abhijit Mallick^[a] and Ramaswamy Murugavel^[a]*

- Figure S1. ¹H NMR and ³¹P NMR spectra of compounds 1-3 in DMSO-*d*₆ (400 MHz).
- Figure S2. FT-IR spectra of compounds 1-3 (as KBr disc).
- Figure S3. ESI-HRMS of compound 1.
- Figure S4. ESI-HRMS of compound 2.
- Figure S5. ESI-HRMS of compound 3.
- Figure S6. Hydrogen bonding diagrams of 2 and 3, along b axis.
- Figure S7. Hydrogen bonding diagrams of 2 and 3, along *c* axis.
- Figure S8. FT-IR spectra of compound 5 (KBr disc).
- Figure S9. ³¹P and ¹H NMR spectra of compound 5 (CDCl₃)
- Figure S10. ESI-HRMS of compound 5.
- Figure S11. FT-IR spectra of compound 6 (KBr disc).
- Figure S12. ³¹P and ¹H NMR spectra of compound 6 (CDCl₃)
- Figure S13. ESI-HRMS of compound 6.
- Figure S14. FT-IR spectra of compound 7 (KBr disc).
- Figure S15. ³¹P and ¹H NMR spectra of compound 7 (CDCl₃).
- Figure S16. ESI-HRMS of compound 7.

Figure 17. FT-IR spectrum of 8 (KBr disc).

Figure 18. 1HNMR of 8 in DMSO- d_6 (top) and MeOD (bottom). In methanol 8 converts to hemiacetal form.

Figure 19. ³¹P NMR of 8 (DMSO-*d*, and CD₃OD, 125 MHz)

Figure 20. ¹³C NMR of **14** (DMSO-*d*, and CD₃OD, 125 MHz) **Figure S21.** ESI-HRMS (negative mode) of compound **8** (Mw = 362.06)

Table S1. Comparison of H-bonding pattern of compounds with $-X-PO_3H_2$ functionalities (X = main group element P or Si)

Figure S1. ¹H NMR (400 MHz, top) and ³¹P NMR (161 MHz, bottom) spectra of halide functionalized X-dippH₂ ligands, **1-3** in DMSO-*d*₆.

Figure S3. ESI-HRMS of compound **1** (Mw = 292.06)

Figure S5. ESI-HRMS of compound **3** (Mw = 383.99)

Figure S6. Hydrogen bonding diagrams of 2 and 3.

Figure S7. Hydrogen bonding diagrams of **2** and **3**, along *c* axis.

Figure S8. FT-IR spectra of compound 5 (KBr disc)

Figure S9. ³¹P and ¹H NMR spectra of compound 5 (CDCl_{3,,} 201 MHz and 500 MHz).

Figure S10. ESI-HRMS of compound 5

Figure S11. FT-IR spectra of compound 6 (KBr disc)

Figure S12. ³¹P and ¹H NMR spectra of compound 6 (CDCl₃, 201 MHZ and 500MHz).

Indian Institute of Technology (B)

Figure S13. ESI-HRMS of compound 6.

S15. ³¹P and ¹H NMR spectra of compound **7** (CDCl₃, 201 MHZ and 500 MHz).

Figure S16. ESI-HRMS of compound 7.

Figure 17. FT-IR spectrum of 8 (KBr disc).

Figure 18. 1HNMR of **8** in DMSO- d_6 (top) and MeOD (bottom). In methanol 14 converts to hemiacetal form.

Figure 19. ³¹P NMR of 8 (DMSO-*d*, and CD₃OD, 125 MHz)

Figure 20¹³C NMR of 14 (DMSO-*d*, and CD₃OD, 125 MHz)

Figure S21. ESI-HRMS (negative mode) of compound 8 (Mw = 362.06)

Comparison of H-bonding pattern of compounds with $-X-PO_3H_2$ functionalities (X = main					
group element P or Si)					
Compound	Sp. Group	Type of H- bonding	Reference		
HO _OH Si_OH	C2/m	Double-sheet structure where	H. Ishida, J. L. Koenig and K. C. Gardner, J. Chem. Phys.,		
avalahavul silanatrial		the $-S1(OH)_3$ groups aggregate in	1982, //, 5/48.		
		a nead-to-nead fashion.			
OH Si∼OH Me₃Si∼SíOH Me₃SíSiMe₃	-	shell polyhedral cluster containing six silanetriol molecules.	S. S. Al-Juaid, N. H. Buttus, R. I. Damja, Y. Derouiche, C. Eabom, P. B. Hitchcock and P. D. Lickiss, <i>J. Organomet.</i> <i>Chem.</i> , 1989 , <i>371</i> , 287.		
Me ₃ Si N-Si-OH OH	P21/c	Forms a cage structure, with eight silanetriol molecules in an asymmetric fashion.	G. Prabusankar, R. Murugavel and R. J. Butcher, <i>Organometallics</i> , 2005 , <i>24</i> , 2124		
Me ₃ Si OH N-Si-OH OH	Triclinic P-1	Tubularwellstructure where theSi(OH)3moietiescome together in alongtubularfashion	R. Murugavel, V. Chandrasekhar, A. Voigt, H. W. Roesky, H. G. Schmidt and M. Noltemeyer, <i>Organometallics</i> , 1995 , <i>14</i> , 5298.		
HO OH POH tert-butylphosphonic acid	Monoclinic C2c	Two different types of aggregates depending on the solvent of the crystallisation (H- bonded polymer from THF and discrete hexameric cluster from CDCl ₃).	M. Mehring, M. Schürmann and R. Ludwig, <i>Chem.–Eur.</i> <i>J.</i> , 2003 , <i>9</i> , 837.		
PO ₃ H ₂ Mono phosphonic acids	Monoclinic P2/c	Ribbon like structure arranged in head to head manner, -PO3H2 groups lock like zip.	R. Murugavel and M. P. Singh, <i>New J. Chem.</i> , 2010 , <i>34</i> , 1846.		
H ₂ O ₃ P PO ₃ I	Monoclinic $P2_12_12_1$	Two dimensional sheet formed by one-dimensional	R. Murugavel and M. P. Singh, <i>New J. Chem.</i> , 2010 , <i>34</i> , 1846.		

Table S1. Comparison of H-bonding pattern of compounds with $-X-PO_3H_2$ functionalities (X = main group element P or Si)

		wave like dimmers.	
Bis phosphonic acids			
H ₂ O ₃ P PO ₃ H ₂ Tris phosphonic acids	Monoclinic P2/c	Three dimensional framework structure aided by lattice water molecules	R. Murugavel and M. P. Singh, <i>New J. Chem.</i> , 2010 , <i>34</i> , 1846.
		Drum like	A C Kalita K Sharma
H ₂ N adippH ₂ .1/3H ₂ O.MeOH adippH ₂ .1/3H ₂ O adippH ₂ .MeOH	Trigonal <i>P</i> -3c Monoclinic <i>C</i> 2/c Triclinic <i>P</i> -1	structure involving six –PO ₃ and six NH ₃ terminals of ligand, formed on water dimer	Ramaswamy Murugavel, CrystEngComm, 2014 , 16, 51–55
2,6-diisopropylphenyl phosphate	Monoclinic P2 ₁	One dimensional chain structure with double P- OH…O=P hydrogen bonds	A. Onoda, T. Okamura, H. Yamamoto, N. Ueyama, <i>Acta</i> <i>Cryst.</i> 2001 , <i>E57</i> , o1022- o1024
O_{2N} O_{2N} 4-nitrophenyl phosphate	Monoclinic P21	One dimensional chain structure with double P- OH…O=P hydrogen bonds	M. Kuczek, I. Bryndal, Tadeusz Lis, <i>Cryst. Eng.</i> <i>Comm.</i> , 2006 , <i>8</i> , 150–162
O OH OH OH OH OH 2'-carboxybiphenyl-4- ylmethyl phosphonate	Triclinic <i>P</i> -1	One dimensional chain structure with double P- OH…O=P hydrogen bonds, the chains bridged by intermolecular – COOH hydrogen bonds into sheets.	W-Q. Kan, J-F. Ma, Y-Y. Liu, J. Yang, B. Liu, <i>Cryst.</i> <i>Eng. Comm.</i> 2012 , <i>14</i> , 2268– 2277
O-P-OH OH H ₂ N	Monoclinic P21	Exists as the zwitterion $H_3N^+C_6H_4PO_3H^-$. In the crystal, molecules are linked by O—H O and N—H O hydrogen-bond bridges, giving a three-dimensional network structure.	K. Thiele, C. Wagner, K. Merzweiler, <i>Acta Cryst.</i> 2012 , <i>E68</i> , o263