Supporting Information

Nitrosyl iron complexes with enhanced NO donating ability: synthesis, structure and properties of a new type of salts with DNIC cations [Fe(SC(NH₂)₂)₂(NO)₂]⁺

Nataliya A. Sanina,^{*a*} Sergey M. Aldoshin,^{*a*} Natal'ya Yu. Shmatko,^{*a*} Denis V. Korchagin,^{*a*} Gennadii V. Shilov,^{*a*} Ekaterine V. Knyazkina,^{*b*} Nikolay S. Ovanesyan^{*a*} and Alexander V. Kulikov^{*a*}

^a Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432
 Chernogolovka, Moscow Region, Russia;
 ^b M.V. Lomonosov Moscow State University, 1, Leninskie gory, Moscow, 119991, Russia

* Tel.: 8 (496) 5221168, Fax: 8 (496) 5223507, e- mail:sanina@ icp.ac.ru

	Comp	Compound II			
1		2			
Bond	d, Å	Bond	d, Å	Bond	d, Å
Fe(1)-N(1)	1.684(2)	Fe(2)-N(8)	1.688(2)	Fe(2)-N(3)	1.688(2)
Fe(1)-N(2)	1.695(2)	Fe(2)-N(7)	1.689(2)	Fe(2)-N(4)	1.689(2)
Fe(1)-S(2)	2.2907(7)	Fe(2)-S(3)	2.2997(7)	Fe(2)-S(4)	2.3130(5)
Fe(1)-S(1)	2.3250(7)	Fe(2)-S(4)	2.3228(7)	Fe(2)-S(3)	2.3353(6)
N(1)-O(1)	1.165(3)	N(8)-O(4)	1.162(3)	N(4)-O(4)	1.163(2)
N(2)-O(2)	1.169(3)	N(7)-O(3)	1.168(3)	N(3)-O(3)	1.175(2)
S(1)-C(1)	1.739(2)	S(3)-C(3)	1.736(2)	S(3)-C(1)	1.755(2)
C(1)-N(3)	1.304(3)	C(3)-N(9)	1.321(3)	N(5)-C(1)	1.321(2)
C(1)-N(4)	1.299(3)	C(3)-N(10)	1.317(3)	N(6)-C(1)	1.311(2)
S(2)-C(2)	1.737(2)	S(4)-C(4)	1.732(2)	S(4)-C(2)	1.729(2)
C(2)-N(6)	1.320(3)	C(4)-N(12)	1.309(3)	N(7)-C(2)	1.323(2)
C(2)-N(5)	1.321(3)	C(4)-N(11)	1.312(3)	N(8)-C(2)	1.324(2)
Bond Angle	ω, deg	Bond Angle	ω, deg	Bond Angle	ω, deg
O(1)-N(1)-Fe(1)	168.9(2)	O(4)-N(8)-Fe(2)	172.7(3)	O(4)-N(4)-Fe(2)	170.1(2)
O(2)-N(2)-Fe(1)	164.9(2)	O(3)-N(7)-Fe(2)	170.3(2)	O(3)-N(3)-Fe(2)	162.5(2)
N(1)-Fe(1)-N(2)	117.7(1)	N(8)-Fe(2)-N(7)	120.3(1)	N(3)-Fe(2)-N(4)	114.18(9)
S(2)-Fe(1)-S(1)	108.83(3)	S(3)-Fe(2)-S(4)	111.17(3)	S(4)-Fe(2)-S(3)	109.42(2)

Table S1 Selected bond lengths and angles for I and II.

Fig. S1 Fragment of the crystal structure of I, the dashed line shows the intermolecular hydrogen bonds.

D-H	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th><th>Α</th></dha<>	d(DA)	Α
N3-H3A	0.860	2.057	170.49	2.909	O8
N4-H4A	0.860	1.969	163.99	2.805	O5
N5-H5A	0.860	2.078	159.88	2.901	O8 [-x+1, y-1/2, -z+1/2]
N6-H6A	0.860	1.994	171.77	2.847	O7 [-x+1, y-1/2, -z+1/2]
N6-H6B	0.860	2.069	163.32	2.903	O8 [x-1/2, y, -z+1/2]
N9-H9A	0.860	2.011	159.58	2.833	O6 [x-1/2, -y+1/2, -z]
N10-H10B	0.860	2.057	160.17	2.881	O7 [x-1/2, -y+1/2, -z]
N10-H10A	0.860	1.978	168.51	2.826	O6 [-x+1, -y, -z]
N11-H11A	0.860	1.991	170.25	2.842	O7 [-x+1/2, y-1/2, z]
N12-H12B	0.860	1.921	174.65	2.779	O5 [-x+1/2, y-1/2, z]

Table S2 Geometric characteristics of intermolecular and intramolecular hydrogen bonds in the crystal structure of **I**.

Fig. S2 Intermolecular contacts S (3) \cdots S (4A) 3.56Å in the crystal structure of I.

Fig. S3 Fragment of the crystal structure of II, the dashed line shows the intermolecular and intramolecular hydrogen bonds.

Table S3 Geometric characteristics of intermolecular and intramolecular hydrogen bonds in thecrystal structure of II.

D-H	d(HA)	<dha< th=""><th>d(DA)</th><th>Α</th></dha<>	d(DA)	Α
N5-H5A	2.214	163.15	3.047	O5 [x+1, y, z]
N6-H6A	2.025	171.52	2.878	O6 [x+1, y, z]
N6-H6B	2.011	169.76	2.862	05
N7-H7A	2.208	151.22	2.990	O7 [x, y, z-1]
N7-H7B	2.394	150.99	3.173	N3
N8-H8A	2.288	149.28	3.059	O7 [-x, -y+2, -z+1]
N8-H8B	2.146	158.60	2.963	O7 [x+1, y, z-1]

Fig. S4 Intermolecular contacts S (3)···S (4A) 3.56Å in the crystal structure of II.

Fig. S5 293 K Mössbauer spectrum of I (raw data – black dots, fitted spectrum – red line).

Fig. S6 293 K Mössbauer spectrum of II (raw data – black dots, fitted spectrum – red line).

X		<u> </u>	Charge : +1
			Multiplicity : 2
	~		Total energy: -2620.31305047 a.u.
	N		
	Fe-	<u>s</u>	
			B
	<u> </u>		
H	S	O P	
Γ	•		
H			
		н	
26	0.860962567	1.699788402	-5.106006389
7	-0.704047287	1.216020552	-5.592516168
7	1.862040819	0.479937270	-4.453240173
8	-1.715623390	0.689743773	-5.834234470
8	2.341368905	-0.481209769	-4.001185432
16	0.328046211	3.338595537	-3.555451277
16	2.108847513	2.611700875	-6.866493673
7	2.932918004	3.455823175	-2.849985122
1	3.726919914	3.801853345	-2.326559952
1	3.108378120	2.797117406	-3.594275288
7	1.486806643	4.846604182	-1.726313896
1	2.234311055	5.246183628	-1.174348196
1	0.551035605	5.188125736	-1.564370937
7	0.406525851	4.701189831	-6.818441320
1	-0.085579096	5.493830739	-7.210075486
1	0.284696167	4.506020752	-5.830385834
7	1.512560139	4.302602603	-8.798901147
1	1.117750808	5.124781391	-9.235889422
1	2.120562014	3.718840482	-9.353838875
6	1.709420516	3.919277199	-2.648400875
6	1.253557923	3.979450891	-7.538066069

 Table S4 Cartesian coordinates and total energy of the cationic DNIC optimized at TPSSh/TZVP level of theory.

Fig. S7 Schematic MO diagram of cationic DNIC.

Table S5 Comparison of the optimized structural parameters of cationic DNIC using various density functionals with x-ray geometries.

	Fe-N, Å	N-O, Å	Fe-S, Å	<feno, th="" °<=""><th><nfen, th="" °<=""><th><sfes, th="" °<=""></sfes,></th></nfen,></th></feno,>	<nfen, th="" °<=""><th><sfes, th="" °<=""></sfes,></th></nfen,>	<sfes, th="" °<=""></sfes,>
DD96	1.668,	1.174,	2.301,	166.0,	114.5	111.2
DP80	1.673	1.176	2.313	169.0	114.5	111.2
TDCC	1.674,	1.173,	2.286,	167.0,	116.0	110.5
1155	1.676	1.173	2.314	169.8	110.0	110.5
D2LVD	1.756,	1.166,	2.387,	166.2,	116.6	111.2
DOLIP	1.757	1.166	2.394	169.7	110.0	111.5
TPSSh	1.708,	1.165,	2.318,	168.1,	116.3	110.5

	1.709	1.166	2.343	169.0		
Event I	1.684(2)-	1.162(3)-	2.2907(7)-	164.9(2)-	117.7(1)-	108.83(3)-
Expt. I	1.695(2)	1.169(3)	2.3250(7)	172.7(3)	120.3(1)	111.17(3)
Evet II	1.688(2),	1.163(2),	2.3130(5),	162.5(2),	11/ 19(0)	100 42(2)
Expt. II	1.689(2)	1.175(2)	2.3353(6)	170.1(2)	114.18(9)	109.42(2)

Table S6 The calculated Mössbauer spectroscopic parameters for cationic DNIC using different density functionals in comparison with the experimental values.

	δ , mm/s	$ \Delta E_Q , \text{mm/s}$
BP86	0.325	0.765
TPSS	0.314	0.812
B3LYP	0.261	1.181
TPSSh	0.217	1.029
Expt. I	0.184(1)	1.165(1)
Expt. II	0.219(1)	1.08(2)