Supporting Information

Enhanced thermal stability and lifetime of epoxy nanocomposites using covalently functionalized clay: Experimental and modelling

Omid Zabihi, Hamid Khayyam, Bronwyn Fox, Minoo Naebe*

Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia

^{*}Corresponding author: Tel: +61469570372

E-mail: minoo.naebe@deakin.edu.au

Fig. S1. TGA curves of pristine clay (top) and s-clay (bottom) at heating rate 10 °C/min.

Fig. S2. DSC measurements on curing of epoxy nanocomposites in present of various concentrations of s-clay.

Fig. S3. DSC measurements on cured epoxy nanocomposites containing various concentrations of sclay for determination of T_{g} .

Fig. S4. TGA curves of epoxy nanocomposites containing various concentrations of s-clay.

Fig. S5. TGA curves of the pure epoxy (a), epoxy/o-clay (b), and epoxy/s-clay (c) systems recorded at different heating rates.

Symbol	$f(\alpha)$	$g(\alpha)$	Solid state processes	
A ₂	$2(1-\alpha) [-\ln(1-\alpha)]^{1/2}$	$[-\ln(1-\alpha)]^{1/2}$	Nucleation and growth (Avrami equation 1)	
A ₃	$3(1-\alpha) [-\ln(1-\alpha)]^{2/3}$	$[-\ln(1-\alpha)]^{1/3}$	Nucleation and growth (Avrami equation 2)	
A_4	$4(1-\alpha) [-\ln(1-\alpha)]^{3/4}$	$[-\ln(1-\alpha)]^{1/4}$	Nucleation and growth (Avrami equation 3)	
R_1	1	α	Phase boundary controlled reaction (one-dimensional movement)	
R_2	$2(1-\alpha)^{1/2}$	$[1-(1-\alpha)^{1/2}]$	Phase boundary controlled reaction (Contracting area)	
R ₃	$3(1-\alpha)^{2/3}$	$[1-(1-\alpha)^{1/3}]$	Phase boundary controlled reaction (Contracting volume)	
D_1	$1/2\alpha$	α^2	One-dimensional diffusion	
D_2	$[-\ln(1-\alpha)]^{-1}$	$(1-\alpha)\ln(1-\alpha)+\alpha$	Two-dimensional diffusion	
D ₃	$3/2(1-\alpha)^{3/2}[1-(1-\alpha)^{1/3}]$	$[1-(1-\alpha)^{1/3}]^2$	Three-dimensional diffusion (Jander equation)	
F_1	(1- <i>α</i>)	$-\ln(1-\alpha)$	Random nucleation with one nucleus on the individual particle	
F_2	$(1-\alpha)^2$	$[1/(1-\alpha)]-1$	Random nucleation with two nuclei on the individual particle	
F ₃	$(1-\alpha)^3$	$[-1+(1-\alpha)^{-2}]$	Random nucleation with three nuclei on the individual particle	

Table S1. Algebraic expressions for $f(\alpha)$ and $g(\alpha)$ for the most frequently used mechanisms of solid state processes.

 Table S2. Activation energies obtained as a function of conversion during thermal degradation of the pure epoxy (a), epoxy/o-clay (b), and epoxy/s-clay (c) systems using the advanced isoconversional

method.						
Conversion	E_a (kJ mol ⁻¹)	E_a (kJ mol ⁻¹)	E_a (kJ mol ⁻¹)			
	(a)	(b)	(c)			
0.05	134.2	133.5	135.4			
0.10	135.5	136.4	136.2			
0.15	135.7	137.7	138.3			
0.20	136.3	139.1	140.4			
0.25	137.1	142.3	151.7			
0.30	138.0	152.2	173.5			
0.35	141.6	161.1	191.2			
0.40	142.5	176.2	212.3			
0.45	143.3	191.7	225.0			
0.50	144.3	194.5	236.4			
0.55	145.1	192.8	237.0			
0.60	146.6	182.3	234.8			
0.65	147.4	173.2	221.7			
0.70	148.0	166.5	211.6			
0.75	150.9	158.0	202.6			
0.80	151.4	157.7	196.8			
0.85	152.7	156.8	193.7			
0.90	152.2	155.2	184.3			
0.95	153.4	154.1	186.8			