Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Comparative Theoretical Study on Energetic Substituted 1,2,3- and 1,2,4-

triazoles: Azido-cyclization Mechanism and Effect of Solvent

Piao He^a, Jian-Guo Zhang^{**a}, Kun Wang^{ab}, Xin Jin^a, Xin Yin^a, Tong-Lai Zhang^a, Shaowen Zhang^c

7 Figures and 3 Tables

Scheme 1 The possible pathways of the cyclization of diazidotriazoles

^{*} Corresponding authors: Jian-Guo Zhang, Tel & Fax: +86 10 68918091. E-mail: zjgbit@bit.edu.cn

Fig. 1 The optimized geometry along the reaction paths

Fig. 2 Molecular electrostatic potential of main compounds

Fig. 3 IR spectra of calculated compounds (the unit of vertical axis is 10⁻⁴⁰ esu²•cm²)

Fig. 4 The potential energy curves along the azido-cyclization paths of (1) and (2)

Fig. 5 The reaction rate constants along the reaction paths

Reaction Coordinates

Reaction Coordinates

Fig. 6 The potential energy curves along the azido-cyclization paths in gas phase and different

solvents

Species	ZPE	U	Н	G	S	Cv
P1	41.762	45.838	46.430	21.838	82.482	24.557
P2	42.037	46.592	47.184	21.353	86.638	26.539

 Table 1 Thermochemical parameters of two major compounds (kcal/mol)

Table 2 The energy parameters of all possible azido-tetrazolo tautomerizations (kcal/mol)

B3LYP/6-311G*	ΔE	V_{MEP}	ΔH_{298k}^{θ}	ΔG_{298k}^{θ}
Reaction11	26.21	36.17	25.45	27.46
Reaction 12	28.14	30.50	27.42	29.17
Reaction 21	12.23	25.20	11.55	13.32
Reaction 22	27.34	33.04	27.05	27.65

Table 3 The energy barriers along the azido-cyclization paths in gas phase and different solvents

(kcal/mol)							
V_{MEP}	Gas	Acetone	TFA	DMSO			
Reaction11	36.17	34.25	34.57	34.04			
Reaction12	30.50	29.52	29.72	29.34			
Reaction21	26.19	25.44	25.50	25.35			
Reaction22	33.83	33.90	33.92	33.80			