Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supporting Information

New J. Chem.

Investigation of the copper(I) catalysed azide-alkyne cycloaddition reactions (CuAAC) in molten PEG₂₀₀₀

Isabelle Billault,* Freddy Pessel, Alain Petit, Raphael Turgis and Marie-Christine Scherrmann.* Université Paris Sud, ICMMO, UMR CNRS 8182, Bâtiment 420, 91405 Orsay, France. Phone: (+33)-(0)1 69 15 72 56; e-mail: <u>marie-christine.scherrmann@u-psud.fr</u>

Table of contents	page
Results of the CuAAC between azides 1 and 2 and alkynes 3b-d	S2
¹ H NMR spectrum of 5a	S 3
¹³ C NMR spectrum of 5a	S 3
¹ H NMR spectrum of 4b	S 4
¹³ C NMR spectrum of 4b	S 4
¹ H NMR spectrum of 5b	S5
¹³ C NMR spectrum of 5 b	S 5
¹ H NMR spectrum of 4c	S 6
¹³ C NMR spectrum of 4c	S 6
¹ H NMR spectrum of 5 c	S 7
¹³ C NMR spectrum of 5 c	S 7
¹ H NMR spectrum of 4d	S 8
¹³ C NMR spectrum of 4d	S 8
¹ H NMR spectrum of 5d	S9
¹³ C NMR spectrum of 5d	S9
¹ H NMR spectrum of 8	S10
¹³ C NMR spectrum of 8	S10
¹ H NMR spectrum of 9 (with MeOH as reference)	S11
¹ H NMR spectrum of 9 (H/D exchange, with MeOH as reference)	S 11
¹ H NMR spectrum of 9 (H/D exchange, no reference)	S12
¹³ C NMR spectrum of 9	S12
XPS spectra (Auger kinetic energies (Cu $L_3M_{45}M_{45}$)) of copper turnings before and after reaction	S 13
XPS spectra (Cu $2p_{3/2}$ lines) for PEG sample after 5 recycling of PEG and CuT	S 13
EPR spectra of PEG samples with catalysts recovered by precipitation	S14

Results of the CuAAC between azides 1 and 2 and alkynes 3b-d

The reactions involving **3c** required more diluted conditions since using 0.3 g PEG₂₀₀₀ per mmol of substrate gave a very viscous reacting mixture and, under these conditions, the conversion did not exceed 90%, even after a prolonged reaction time (12 h), either with 3-azidopropanol (**1**) or its acetate derivatives **2**. Using 0.4 g PEG₂₀₀₀ per mmol allowed complete conversions with all catalysts and the isolated yields were between 91 and 97% (Table).

entry	Azide	Acetylene	Catalyst (wt %)	Time (h)	Product	Yield (%)
1	1	3b	CuI (1%)	2	4b	96
2			CuNP (1%)	2		97
3			CuT (40%)	8		94
4	2		CuI (1%)	4	5b	100
5			CuNP (1%)	4		100
6			CuT (40%)	4		100
7	1	3c ^a	CuI (1%)	2	$4c^{b}$	91
8			CuNP (1%)	2		92
9			CuT (40%)	4		93
10	2		CuI (1%)	2	5c ^b	96
11			CuNP (1%)	6		97
12			CuT (40%)	17		96
13	1	3d	CuI (1%)	0.5	4d	98
14			CuNP (1%)	0.5		97
15			CuT (40%)	6		96
16	2		CuI (1%)	0.5	5d	97
17			CuNP (1%)	2		96
18			CuT (40%)	4		94

S 2

1-(3-Acetoxypropyl)-4-phenyl-1,2,3-triazole (5a) ¹H NMR (250 MHz, CDCl₃)

4-(2-Formylphenyl)-1-(3-hydroxypropyl)-1,2,3-triazole (4b)

¹H NMR (250 MHz, CDCl₃)

1-(3-Acetoxypropyl)-4-(2-formylphenyl)-1,2,3-triazole (5b) 1 H NMR (400 MHz, CDCl₃)

4-(4-Formylphenyl)-1-(3-hydroxypropyl)-1,2,3-triazole (4c)

¹H NMR (360 MHz, CDCl₃)

1-(3-Acetoxypropyl)-4-(4-formylphenyl)-1,2,3-triazole (5c)

¹H NMR (360 MHz, CDCl₃)

1-(3-Hydroxypropyl)-4-(4-methylphenyl)-1,2,3-triazole (4d) ¹H NMR (250 MHz, CDCl₃)

1-(3-Acetoxypropyl)-4-(4-methylphenyl)-1,2,3-triazole (5d)

¹H NMR (360 MHz, CDCl₃)

3-Azido-1-(C- β -D-glucopyranosyl)-propan-2-one (8)

(8*)

но

но

нď

¹H NMR (360 MHz, D_2O) + MeOH as reference

 1 H NMR (360 MHz, D₂O), with exchange H/D at position i,i' (MeOH as reference)

¹H NMR (360 MHz, D_2O) with exchange H/D at position i,i'

Auger kinetic energies (Cu L₃M₄₅M₄₅)

1 a and b: Matte and glossy surfaces of copper turnings before reaction; 2 a and b: Matte and glossy surfaces after reaction in the presence of azide 1; 3 a and b: Matte and glossy surfaces after reaction in the presence of azide 8.

XPS spectra (Cu $2p_{3/2}$ lines) for PEG sample after 5 recycling of PEG and CuT, [Cu] = 4502 ppm.

The ratio of CuO/Cu_2O in the reaction mixture could be approximate by the XP spectra of a PEG sample after CuAAC reaction using CuT. The PEG sample with a high copper concentration (4502 ppm) gave a ratio signal/noise acceptable to identify copper species in PEG. Comparison of both signal areas shown that the ratio CuO/Cu_2O was approximately 9:90, which is in agreement with the weight percentage of the Cu(II) determined by EPR spectroscopy at 5% for the same sample.

EPR spectra of PEG samples with catalysts recovered by precipitation.

- (A) PEG + CuNP after the first run, [Cu] = 1989 ppm
- (B) PEG + Cu T after 6 recycling in new PEG, [Cu] = 962 ppm
- (C) PEG + Cu T after 6 recycling of PEG and Cu T, [Cu] = 4502 ppm
- (D) PEG + Cu T, 6 days at 70 °C no use for CuAAC, [Cu] = 114 ppm
- (E) PEG + CuI after the first run, [Cu] = 1879 ppm.