Helical Arylamide Foldamers: Structure Prediction by Molecular Dynamics Simulations

Zhiwei Liu, Ara M. Abramyan, Vojislava Pophristic*

Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA 19104

	Tetramer			Octamer			Dodecamer		
	CHCl ₃	MeOH	H_2O	CHCl ₃	MeOH	H ₂ O	CHCl ₃	MeOH	H ₂ O
I-OMe	87.7	90.3	84.9	20.6	64.6	63.7	0.5	99.8	99.6
I-F	96.5	73.1	57.3	93.2	52.2	37.0	90.8	46.4	87.7
I-Napy	100	92.9	100	100	87.0	83.1	100	100	100
II-OMe	88.9	89.7	79.6	36.6	77.5	78.5	10.2 ^a	99.9	99.4
II-F	96.7	71.4	52.6	86.6	32.0	35.8	64.6 ^a	31.7	86.3
II-Napy	100	94.2	68.9	99.8	91.3	21.1	98.7 ^a	100	97.8
III-OMe	95.8	92.2	88.6	66.3 ^a	99.5	100	86.6 ^a	80.1 ^a	95.1ª
III-F	97.3	59.0	43.0	92.6	39.4	98.6	99.3	64.4	98.9
III-Py	100	12.4	5.8	100	100	100	100	100 (86.3) ^b	$100(6)^{b}$
III-Qn	100	100	100	100	100	100	100	100	100
III-Bf	90.5	55.8	91.9	100	97.3	100	90.6	99.6	100
IV-OMe	93.9	91.2	93.2	60.3 ^a	66.6 ^a	99.9	77.2 ^a	74.4 ^a	44.9 ^a
IV-F	96.0	66.2	40.8	95.9	65.6	93.0	99.6	90.7	99.5
IV-Py	100	23.5	9.4	100	100 (93.0) ^b	100 (76.2) ^b	98.4	100 (76.1) ^b	100 (49.3) ^b
IV-Qn	100	100	99.8	100	100	100	100	100	100
IV-Bf	85.6	20.7	40.0	99 9	$100(777)^{b}$	100	99.9	$100(44.8)^{b}$	$100(945)^{b}$

Table S1. Percentage of helical (*n* > NUpT) or fully H-bonded conformations (*n* < NUpT, *italic numbers*)

^a In these cases, no helical conformation was found (identified structures are elongated helices with no aromatic stacking, partially folded structures, etc.). The percentages shown are for fully H-bonded conformations, calculated as having all of the atomistic dihedral angles within the range that favours the intramolecular H-bonds.

^b The 100% values are for helical conformation with or without one terminal group flipped 180°, and the percentage values in the parenthesis are for fully H-bonded conformations.

Dodeca-I-F (initial, top and side view)

Dodeca-I-Napy (initial, top and side view)

Dodeca-I-Napy in methanol (snapshot at ~10ns)

Dodeca-II-F (initial, top and side view)

Dodeca-II-OMe (initial, top and side view)

Dodeca-II-F in water (snapshot at ~13.5ns)

Dodeca-II-OMe in water (snapshot at ~18 ns)

Dodeca-II-Napy (initial, top and side view)

Dodeca-II-Napy in water (snapshot at ~8.3 ns)

Figure S1. Examples of initial structures and snapshots from simulations of type I and II oligomers.

Octa-III-OMe (initial, top and side view)

Octa-III-Qn (initial, top and side view)

Octa-III-Py (initial, top and side view)

Octa-III-OMe in water (snapshot at ~20 ns)

Octa-III-Qn in water (snapshot at ~20 ns)

Octa-III-Py in water (snapshot at ~ 10 ns)

Octa-IV-Py (initial, top and side view)

Octa-IV-Bf (initial, top and side view)

Octa-IV-Py in water (snapshot at ~ 10 ns)

Octa-IV-Bf in water (snapshot at ~ 15 ns)

Figure S1-cont. Examples of initial structures and snapshots from simulations of type III and IV oligomers.

Figure S2. MD trajectory examples. Top: Distance between COMs of the *i*th and (i+NUpT)th aromatic ring is shown as a function of simulation time for **Tetra-III-Bf** in methanol. Snapshots of the tetramer at selected time intervals are shown to illustrate that folding/unfolding and helix handedness inversion have occurred. Bottom: The terminal N_a-C_a-N_p-C_p (depicted as ball and stick mode in the snapshots) dihedral angle is shown as a function of simulation time for **Octa-IV-Py** in water. Snapshots show helical conformation with and without the terminal group flipped 180°.