Electronic Supplementary Information (ESI)

Two hexaazatriphenylene-pyrene based Hg²⁺ fluorescent chemosensors applicable to test paper detection

Yue Li, Le-Le Yang, Kun Liu, Fang-Yao Zhao, Huan Liu, Wen-Juan Ruan*

Department of Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China. Email: wjruan@nankai.edu.cn; Tel: (+86)-22-23501717

Experimental

1. Materials and general methods

All the starting reagents and chemicals were purchased from commercial sources and used as received. Intermediates 2,7-di-tert-butylpyrene-4,5,9,10-tetraone, 2,7-di-tert-butylpyrene-4,5-dione and 2,3,8,9-tetraphenylpyrazino[2,3-f]quinoxaline-5,6-diamine were prepared according to literature procedures.¹⁻³ The solvents used for fluorescence measurements were purified by standard procedures. ¹H NMR spectra were recorded in CDCl₃ on a Bruker 300 MHz NMR spectrometer. High-resolution mass spectra were measured on an IonSpec 7.0T FT-ICR mass spectrometer. IR spectra were recorded on a TENSOR 27 OPUS Fourier transform infrared (FT-IR) spectrometer (Bruker) in the range of 4000–400 cm⁻¹ using KBr disks dispersed with sample powders. Elemental analyses (C, H, and N) were tested using a Perkin-Elmer 240C analyzer. Fluorescence spectra were measured at room temperature on a Varian Cary Eclipse fluorescence spectrometer. UV-vis absorption spectra were recorded by a Shimadzu UV-2450 UV-vis spectrophotometer.

2. Characterization data of compound 1

¹H NMR (300 MHz, CDCl₃): δ (ppm) 1.67 (s, 18H), 7.46 (s, 24H), 7.92 (q, 8H), 7.99 (q, 8H), 8.76 (d, 2H), 10.07 (d, 2H). ¹³C NMR (300 MHz, CDCl₃): δ (ppm) 31.98, 36.65, 128.50, 128.64, 129.85, 130.34, 138.27, 138.33, 139.36, 139.72, 141.28, 141.79, 152.46, 153.50, 154.35. MS-ESI calcd. for C₉₂H₆₃N₁₂ [M + H]⁺ 1336.5, found 1336.5. Anal. Calcd. for C₉₂H₆₄N₁₂•2H₂O: C, 80.56; H, 5.58; N, 12.25%; Found: C, 80.41; H, 5.47; N, 12.14%. IR (KBr, cm⁻¹): 3132, 2917, 2849, 1586, 1472, 1369, 1247, 788, 594, 548.

3. Characterization data of compound 2

¹H NMR (300 MHz, CD₃Cl): δ (ppm) 1.75 (s, 18H), 7.46 (m, 12H), 7.93 (m, 4H), 8.05 (m, 6H), 8.38 (s, 2H), 10.03 (s, 2H). ¹³C NMR (300 MHz, CDCl₃): δ (ppm) 32.73, 36.55, 122.01, 124.66, 127.40, 128.48, 128.62, 129.68, 130.38, 131.24, 138.58, 139.38, 139.86, 140.68, 144.25, 149.70, 153.41, 153.87. MS-ESI calcd. for C₅₈H₄₅N₆ [M + H]⁺ 825.4, found 825.8; calcd. for C₁₁₆H₈₉N₁₂ [2M + H]⁺ 1650.7, found 1649.4. Anal. Calcd. for C₅₈H₄₄N₆·3H₂O: C, 79.25; H, 5.73; N, 9.56%; Found: C, 79.14; H, 5.76; N, 9.18%. IR (KBr, cm⁻¹): 3441, 3056, 2951, 1586, 1473, 1370, 905, 741, 695, 594.

Entry	Chromophore	Detection limit (nM)	Ref.
1	pyrene-hexaazatriphenylene	2.8 for 1	This work
		3.1 for 2	
2	acridinedione	2	4
3	anthracene and pyrene	2-4	5
4	rhodamine	3	6
5	rhodamine B	5.9	7
6	pyrene	22	8
7	phenanthroimidazole	25	9
8	BODIPY	27	10
9	1-aminoanthraquinone	50	11
10	rhodamine B and hexaphenylbenzene	50-100	12
11	dansyl	50-250	13
12	pyrene	74	14
13	7-methoxycoumarin	200-315	15
14	BODIPY	226	16
15	naphthalene	230	17
16	pyrene	510-2400	18
17	10-ethylphenothiazine	906	19
18	Tetraphenylethene and benzothiazolium	1000	20
19	quinazoline	1500	21
20	nitrobenzoxadiazole	1500	22
21	anthracene and oxyquinoline	3200	23
22	BODIPY	10000	24
23	BODIPY	15000	25
24	BODIPY	Not given	26

 Table S1
 The Hg²⁺ responsive chemosensors reported in recent years (2012-2014)

Table S2	The energies of t	ne frontier orbitals	of compound 1 and 2
----------	-------------------	----------------------	---------------------

Compound	HOMO (eV)	LUMO (eV)	LUMO – HOMO (eV)
1	-5.663	-2.281	3.383
2	-5.462	-2.187	3.274

Fig. S1 Linear emission intensity change of (a) **1** and (b) **2** as a function of Hg²⁺ concentration. λ_{em} is 459 nm for **1** and 529 nm for **2**.

Fig. S2 The linear fitting of fluorescence intensity change with $\log[(F_{\infty}-F)/(F-F_0)] = n\log[\text{Hg}^{2+}] + \log\beta$. *n* is the complex-ratio of **1** or **2** to Hg^{2+} , β is the stability constant of the formed complex, F_0 , F and F_{∞} are the fluorescence intensities of the solution of **1** or **2** after the addition of none, a given amount and excess amount of Hg^{2+} , respectively. (a) [**1**] = 10 μ M, $\lambda_{em} = 459$ nm. (b) [**2**] = 10 μ M, $\lambda_{em} = 529$ nm.

Fig. S3 Job's plots of (a) **1** and (b) **2** to Hg^{2+} in CH_3CN-H_2O (v/v = 9/1) media obtained by fluorescence measurements.

Fig. S4 Possible binding sites of compounds 1 and 2.

Fig. S5 Absorption spectra of (a) **1** (50 μ M) and (b) **2** (50 μ M) in CH₃CN-H₂O (v/v = 9/1) media upon the addition of Hg²⁺ (0–220 μ M for **1** and 0–500 μ M for **2**).

Fig. S6 The linear fitting of absorbance change with $\log[(A_{\infty}-A)/(A-A_0)] = n\log[Hg^{2+}] + \log\beta$. *n* is the complex-ratio of **1** or **2** to Hg^{2+} , β is the stability constant of the formed complex, A_0 , A and A_{∞} are the absorbances of the solution of **1** or **2** after the addition of none, a given amount and excess amount of Hg^{2+} , respectively. (a) [**1**] = 50 μ M, λ = 399 nm. (b) [**2**] = 50 μ M, λ = 364 nm.

Fig. S7 Interfacial plots of the HOMO and LUMO of compunds (a) **1** and (b) **2**. The molecular configurations of these compounds were optimized at B3LYP/6-31G(d) level previously. Gray, white and blue atoms of the molecular frameworks indicate the C, H and N atoms, respectively. Red and green parts on the interfacial plots refer to the different phases of the molecular wave functions, for which the isovalue is 0.02 au.

Fig. S8 ESI-MS spectrum of compound 1.

Fig. S9 ESI-MS spectrum of compound 2.

Fig. S10 The ¹H NMR spectra of (a) **1** and (b) **2**.

Fig. S11 The 13 C NMR spectra of (a) 1 and (b) 2.

References

- X.-H. Zhang, Q. Zhao, X.-M. Liu, T.-L. Hu, J. Han, W.-J. Ruan and X.-H. Bu, *Talanta*, 2013, 108, 150.
- 2 J. Hu, D. Zhang and F. W. Harris, J. Org. Chem., 2004, 70, 707.
- 3 D. Z. Rogers, J. Org. Chem., 1986, 51, 3904.
- 4 R. Koteeswari, P. Ashokkumar, E. J. P. Malar, V. T. Ramakrishnan and P. Ramamurthy, *Chem. Commun.*, 2011, **47**, 7695.
- 5 A. Thakur, D. Mandal, P. Deb, B. Mondal and S. Ghosh, RSC Adv., 2014, 4, 1918.
- 6 Y.-J. Gong, X.-B. Zhang, Z. Chen, Y. Yuan, Z. Jin, L. Mei, J. Zhang, W. Tan, G.-L. Shen and R.-Q. Yu, *Analyst*, 2012, 137, 932.
- 7 L. Wang, B. Zheng, Y. Zhao, J. Du and D. Xiao, Anal. Methods, 2012, 4, 2369.
- 8 G. Sivaraman, T. Anand and D. Chellappa, *RSC Adv.*, 2012, **2**, 10605.
- 9 Y. Yan, R. Zhang, X. Yu and H. Xu, ChemPlusChem, 2014, 79, 1676.
- M. J. Culzoni, A. Muñoz de la Peña, A. Machuca, H. C. Goicoechea, R. Brasca and R. Babiano, *Talanta*, 2013, 117, 288.
- S. Areti, D. S. Yarramala, K. Samanta, V. K. Hinge, J. Khedkar and C. P. Rao, *RSC Adv.*, 2014, 4, 16290.
- 12 V. Bhalla, V. Vij, R. Tejpal, G. Singh and M. Kumar, Dalton Trans., 2013, 42, 4456.
- 13 L.-J. Ma, J. Liu, L. Deng, M. Zhao, Z. Deng, X. Li, J. Tang and L. Yang, Photochem. Photobio. Sci., 2014, 13, 1521.
- 14 G. K. Wang, Q. L. Mi, L. Y. Zhao, J. J. Hu, L. E. Guo, X. J. Zou, B. Liu, X. G. Xie, J. F. Zhang, Q. H. Zhao and Y. Zhou, *Chem. Asian J.*, 2014, 9, 744.
- I. T. Ho, T.-L. Lai, R.-T. Wu, M.-T. Tsai, C.-M. Wu, G.-H. Lee and W.-S. Chung, *Analyst*, 2012, **137**, 5770.
- 16 M. Vedamalai and S.-P. Wu, Org. Biomol. Chem., 2012, 10, 5410.
- 17 K. Tayade, B. Bondhopadhyay, A. Basu, G. K. Chaitanya, S. K. Sahoo, N. Singh, S. Attarde and A. Kuwar, *Talanta*, 2014, **122**, 16.
- 18 Q.-Y. Cao, Y.-M. Han, H.-M. Wang and Y. Xie, Dyes Pigments, 2013, 99, 798.
- 19 J. Weng, Q. Mei, B. Zhang, Y. Jiang, B. Tong, Q. Fan, Q. Ling and W. Huang, Analyst, 2013,

138, 6607.

- 20 N. Zhao, J. W. Y. Lam, H. H. Y. Sung, H. M. Su, I. D. Williams, K. S. Wong and B. Z. Tang, *Chem. Eur. J.*, 2014, **20**, 133.
- Q. Mei, L. Wang, B. Tian, F. Yan, B. Zhang, W. Huang and B. Tong, *New J. Chem.*, 2012, 36, 1879.
- 22 J. Choi, S. K. Lee, J. Bae and S.-K. Chang, *Tetrahedron Lett.*, 2014, 55, 5294.
- 23 L. Praveen, J. Babu, M. L. P. Reddy and R. Luxmi Varma, Tetrahedron Lett., 2012, 53, 3951.
- 24 X.-J. Jiang, C.-L. Wong, P.-C. Lo and D. K. P. Ng, *Dalton Trans.*, 2012, 41, 1801.
- 25 T. K. Khan and M. Ravikanth, Dyes Pigments, 2012, 95, 89.
- 26 S. Wagner, K. Brödner, B. A. Coombs and U. H. F. Bunz, *Eur. J. Org. Chem.*, 2012, 2012, 2237.