Supporting Information

Green Catalyst: Magnetic La_{0.7}Sr_{0.3}MnO₃ Hollow Microspheres

Cuiping Zhou,^{*a*} Keke Huang,^{*a*} Long Yuan,^{*a*} Wenchun Feng,^{*b*} Xuefeng Chu,^{*c*} Zhibin Geng,^{*a*} Xiaofeng Wu,^{*a*} Liying Wang^{*a*} and Shouhua Feng^{**a*}

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Email: <u>shfeng@jlu.edu.cn</u>; Fax: +86-431-85168624; Tel.: +86-431-85168661

^b Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States.

^c Department of Basic Science, Jilin Jianzhu University, Changchun 130118, P. R. China.

1. Experimental section

1.1. Regents

Lanthanum nitrate hexahydrate (La(NO₃)₃ $6H_2O$, AR), strontiumnitrate (Sr(NO₃)₂, AR), manganese acetate tetrahydrate (Mn(CH₃COO)₂ $4H_2O$, AR), polyvinylpyrrolidone (PVP-K30, AR) and N,N-dimethylformamide (DMF, AR) were purchased from Sinopharm Chemical Reagent Co. Ltd. All chemicals were used without further purification.

1.2. Preparation of the precursor solution

In the typical experiment, 4 mmol stoichiometric amount of $La(NO_3)_3$ 6H₂O, Sr(NO₃)₂, Mn(CH₃COO)₂ 4H₂O and 1.5381 g polyvinylpyrrolidone (PVP) were mixed in 5 mL N,N-dimethylformamide (DMF). Then the mixture was stirred till the solution became homogeneous.

1.3. Preparation of LSMO hollow spheres

The final homogeneous mixture was loaded into a plastic syringe. The needle tip was connected with a terminal while aluminum foil covering collector worked as counter electrode. The applied voltage was 15 kV at a constant distance of 13 cm between the tip and collector under a flow rate of 0.15 ml/h with a needle of inner diameter of 0.34 mm. The obtained LSMO/PVP composites were dried at 60 °C for 12 h and calcined at 1 °C/min, 5 °C/min and 10 °C/min under 650 °C for 5 h in air.

1.4. Preparation of LSMO nanoparticles

The same homogeneous mixture as that used in electrospinning process was dried at 60 $^{\circ}$ C for 12 h and calcined at 1 $^{\circ}$ C/min, 5 $^{\circ}$ C/min and 10 $^{\circ}$ C/min under 650 $^{\circ}$ C for 5 h in air.

1.5. Characterization of LSMO hollow spheres

Power X-ray diffraction (XRD) patterns were obtained using a Rigaku D/Max 2550 V/PC X-ray diffractometer with Cu K α radiation (λ =1.54718 Å) operating at 50 kV and 200 mA at room temperature by step scanning in the angle range of 20°≤20≤80 °with an increment of 0.02 °. Inductively coupled plasma spectroscopy (ICP) was used to determine the composition of products. Scanning electron microscope (SEM) with a Helios NanoLab 600i Dual Beam System from FEI Company, was employed to observe the morphology of products. The high-resolution transmission electron microscopy (HRTEM) image was obtained using an electron microscope (Tecnai F20) operated at 200 kV from FEI Company. The X-ray photoelectron spectra (XPS) was taken on a Thermo ESCALAB 250Xi electron energy spectrometer using Al K α (1486.6 eV) as the X-ray excitation source. Nitrogen adsorption-desorption isotherms were collected from a TriStar 3000 (Micromeritics) nitrogen adsorption apparatus at 77 K. The magnetic properties were investigated with a superconducting quantum interference device (SQUID) magnetometer (Quantum Design) from 4 to 380 K.

1.6. Photocatalytic Water Oxidation

The photocatalytic water evolution was performed in a 20 mL sodium bicarbonate solution (1 mM, adjust to pH=7.0 with H₂SO₄) containing 250 ppm catalyst, Na₂S₂O₈ (10.0 mM) as an electron acceptor, and [Ru(bpy)₃]Cl₂ (0.5 mM) as a photosensitizer. The solution was purged with N₂ gas for 10 min in a reactor and then sealed with a quartz cover. The reaction was started by irradiating the solution with a Newport oriel sol3A solar simulator through a transmitting glass filter (λ > 420 nm) with magnetic stirring at room temperature. Dissolved O₂ concentration was measured with a Clark type electrode.

2. Figures

Fig. S1. (a) Power XRD patterns of LSMO microspheres and reference of JCPDS card No. 51-0409, (b) cross-sectional HR-TEM image of LSMO-10.

Fig. S2. SEM images of electrospun La_{0.7}Sr_{0.3}MnO₃ precursor spheres before calcination. Scale bar: 5 µm.

Fig. S3. SEM images of electrospun $La_{0.7}Sr_{0.3}MnO_3$ prepared with the sol containing inorganics amount of (a) 4 mmol, (b) 3 mmol, (c) 2 mmol calcined at 1 °C/min under 650 °C for 5 h. Scale bars: 5 µm and 1 µm for low and high-magnification images, respectively.

Fig. S4. SEM images of electrospun $La_{0.7}Sr_{0.3}MnO_3$ calcined at the temperature of (a) 650 °C, (b) 750 °C, (c) 950 °C, (d) 1050 °C at 1 °C/min for 5 h. Scale bars: 5 μ m and 1 μ m for low- and high-magnification images, respectively.

Fig. S5. SEM images showing the evolution process of $La_{0.7}Sr_{0.3}MnO_3$ hollow spheres for different calcination periods: (a) 7 h, (b) 10 h under 650 °C at 1 °C/min. Scale bars: 5 μ m and 1 μ m for low- and high-magnification images, respectively.

Fig. S6. SEM images of $La_{0.7}Sr_{0.3}MnO_3$ nanoparticles prepared by sol-gel at the heating rate of (a) 1 °C/min, (b) 5 °C/min, (c) 10 °C/min under 650 °C for 5 h. Scale bars: 2 μ m.

Table S1. The content of Mn in surface of LSMO and sol-LSMO from quantitative XPS analysis.

Catalyst	Mn (At. %)	Catalyst	Mn (At. %)
LSMO-1	8.21	sol-LSMO-1	7.85
LSMO-5	9.59	sol-LSMO-5	5.53
LSMO-10	5.84	sol-LSMO-10	7.22

Table S2. The BET surface area of LSMO and sol-LSMO determined by nitrogen adsorption/desorption measurements.

Catalyst	S_{BET} (m ² /g)	Catalyst	S_{BET} (m ² /g)
LSMO-1	11.1644	sol-LSMO-1	16.9738
LSMO-5	17.9907	sol-LSMO-5	20.1589
LSMO-10	2.6421	sol-LSMO-10	19.1365

Fig. S7. Time courses of O₂ evolution under visible light irradiation (a Newport oriel sol3A solar simulator through a transmitting glass filter, λ > 420 nm) of a bicarbonate buffer solution (1 mM, 20 mL, pH 7.0) containing [Ru(bpy)₃]²⁺ (0.5 mM), Na₂S₂O₈ (10 mM) with 250 ppm catalyst at room temperature in three repetitive examinations.

Fig. S8. ZFC and FC magnetization plots (from 4 to 380 K under a 0.1 T field) of $La_{0.7}Sr_{0.3}MnO_3$ hollow spheres calcined at (a) 1 °C/min, (b) 5 °C/min, (c) 10 °C/min under 650 °C for 5 h.

Table S3. The coercive field, remanent magnetization and saturated magnetization values of (a) LSMO-1, (b) LSMO-5 and (c)LSMO-10.

	<i>M</i> s(emu/g)	<i>M</i> _R (emu/g)	H _C (Oe)
a (LSMO-1)	74.0	12.1	170.0
b (LSMO-5)	32.3	10.1	368.7
c (LSMO-10)	67.6	13.4	216.6