Enhanced hydrogen production under visible light source and dye degradation under natural sunlight using nanostructured doped zinc orthotitanates

Latesh Nikam ${ }^{\text {a,b }}$, Rajendra Panmand ${ }^{\text {a }}$, Sunil Kadam ${ }^{\text {a }}$, Sonali Naik ${ }^{\text {a }}$ and Bharat Kale ${ }^{\text {a }}$.

Supporting Information

S1 JCPDS Data

Fig 1 JCPDS data of $\mathrm{Zn}_{2} \mathrm{TiO}_{4}$ (cubic) [86-0154]

Fig 2 JCPDS data of $\mathrm{Zn}_{2} \mathrm{TiO}_{4}$ (Tetragonal) [86-0158]

Fig 3 JCPDS data of Ag [04-0783]

S-2 FTIR analysis

Fig : FTIR spectra of $\mathrm{Zn}_{2} \mathrm{TiO}_{4}, \mathrm{Ag} @ \mathrm{Zn}_{2} \mathrm{TiO}_{4}$ and $\mathrm{Co} @ \mathrm{Zn}_{2} \mathrm{TiO}_{4}$ A) in the range $4000-350 \mathrm{~cm}^{-1}$ B) magnified in the range $1000-350 \mathrm{~cm}^{-1}$

S-3: Elemental analyses

The elemental analysis of the synthesized compounds has been performed by Energy Dispersive X ray Fluorescence (EDXRF) analyses technique. The data given in table 1 shows that $\% \mathrm{Zn}$ and Ti observed in all synthesized samples is in good agreement with expected values and molecular formula of the oxides.

Table : EDXRF data for elemental analyses of zinc orthotitanates

Sr. No.	Compound	Elements (\%)		
		Zn	Ti	$\mathrm{M}(\mathrm{Co} / \mathrm{Ag})$
01	$\mathrm{Zn}_{2} \mathrm{TiO}_{4}$	$73.2(73.2)$	$26.8(26.8)$	-
02	$\mathrm{Zn}_{1.9} \mathrm{Co}_{0.1} \mathrm{TiO}$ 4	$71.4(69.8)$	$25.4(26.9)$	$3.3(3.3)$
03	$\mathrm{Zn}_{1.9} \mathrm{Ag}_{0.2} \mathrm{TiO}_{4}$	$64.3(64.1)$	$24.9(24.7)$	$10.8(11.2)$

S-4

Fig. ED pattern of $\mathrm{Ag} @ \mathrm{Zn}_{2} \mathrm{TiO}_{4}$

S-5: Pore volume plots

Fig. 1 Pore volume plot of $\mathrm{Zn}_{2} \mathrm{TiO}_{4}$

Fig. 2 Pore volume plot of $\mathrm{Ag} @ \mathrm{Zn}_{2} \mathrm{TiO}_{4}$

Fig. 3 Pore volume plot of $\mathrm{Co} @ \mathrm{Zn}_{2} \mathrm{TiO}_{4}$

S-6

Fig. Effect of amount of $\mathrm{Ag} @ \mathrm{Zn}_{2} \mathrm{TiO}_{4}$ on the rate of degradation of AO-8 a) 30 b)20 and c) 10 mg

S-7

Fig. 1 Effect of concentration of catalyst for 10 and $20 \mathrm{mg} \mathrm{Ag@} \mathrm{Zn}_{2} \mathrm{TiO}_{4}$ for 5 ppm solution

Fig. 2 Effect of amount of $\mathrm{Ag@} \mathrm{Zn}_{2} \mathrm{TiO}_{4}$ (20 and 30 mg) catalyst for $7.5 \mathrm{ppm} \mathrm{Rh}-\mathrm{B}$ solution.

