Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

New Journal of Chemistry

Synthesis and mechanism of novel fluorescent coumarindihydropyrimidinone dyads obtained by Biginelli multicomponent reaction.

Felipe Vitório^{*a,b*}, Thiago Moreira Pereira^{*a*}, Rosane Nora Castro^{*b*}, Guilherme Pereira Guedes^{*b*}, Cedric Stephan Graebin^{*a,b*} and Arthur Eugen Kummerle^{*,*a,b*}

^a Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Departament of Chemistry, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 239897-000, Brazil.

^b Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 239897-000, Brazil.

Email: akummerle@ufrrj.br

Supporting Information

Contents

Copies of ¹ H , ¹³ CNMR and Mass Spectra for all products	2-43
HPLC data analysis	44-48
Crystal Structure analysis	49-50

Fig. S1 ¹H NMR (500 MHz), ¹³C NMR (125 MHz) spectra of **3a** in DMSO-*d6*.

Fig. S2 ESI spectra of 3a.

Fig. S3 ¹H NMR (500 MHz), ¹³C NMR (125 MHz) spectra of **3b** in DMSO-*d6*.

Fig. S4 ESI spectra of 3b.

Fig. S5 ¹H NMR (400 MHz), ¹³C NMR (100 MHz) spectra of **4a** in DMSO-*d6*.

Fig. S6 ESI spectra of 4a.

Fig. S7 ¹H NMR (400 MHz), ¹³C NMR (100 MHz) spectra of **4b** in DMSO-*d6*.

Fig. S8 ESI spectra of 4b.

Fig. S9 ¹H NMR (400 MHz), ¹³C NMR (100 MHz) spectra of **4c** in DMSO-*d6*.

Fig. S10 ESI spectra of 4c.

Fig. S11 1 H NMR (400 MHz), 13 C NMR (100 MHz) spectra of **4d** in DMSO-*d6*.

Fig. S12 ESI spectra of 4d.

Fig. S13 ¹H NMR (500 MHz), ¹³C NMR (100 MHz) spectra of **4e** in DMSO-*d6*.

Fig. S14 ESI spectra of 4e.

Fig. S15 ¹H NMR (500 MHz), ¹³C NMR (125 MHz) spectra of **4f** in DMSO-*d6*.

Fig. S16 ESI spectra of 4f.

Fig. S17 ¹H NMR (500 MHz), ¹³C NMR (125 MHz) spectra of **4g** in DMSO-*d6*.

Fig. S18 ESI spectra of 4g.

Fig. S19 1H NMR (500 MHz), 13C NMR (125 MHz) spectra of 4h in DMSO-d6.

Fig. S20 ESI spectra of 4h.

Fig. 21 ¹H NMR (400 MHz), ¹³C NMR (100 MHz) spectra of **4i** in DMSO-*d6*.

Fig. S22 ESI spectra of 4i.

Fig. 23 ¹H NMR (500 MHz), ¹³C NMR (100 MHz) spectra of **4j** in DMSO-*d6*.

Fig. S24 ESI spectra of 4j.

Fig. 25 ¹H NMR (500 MHz), ¹³C NMR (100 MHz) spectra of **4k** in DMSO-*d6*.

Fig. S26 ESI spectra of 4k.

Fig. S27 ¹H NMR (400 MHz), ¹³C NMR (100 MHz) spectra of **4I** in DMSO-*d6*.

Fig. S28 ESI spectra of 4l.

Fig. S29 1 H NMR (400 MHz), 13 C NMR (100 MHz) spectra of **4m** in DMSO-*d6*.

Fig. S30 ESI spectra of 4m.

Fig. S31 1 H NMR (500 MHz), 13 C NMR (125 MHz) spectra of **4n** in DMSO-*d6*.

Fig. S32 ESI spectra of 4n.

Fig. S33 1 H NMR (500 MHz), 13 C NMR (125 MHz) spectra of **40** in DMSO-*d6*.

Fig. S34 ESI spectra of 40.

Fig. S35 1 H NMR (500 MHz), 13 C NMR (125 MHz) spectra of **4p** in DMSO-*d6*.

Fig. S36 ESI spectra of 4p.

Fig. S37 1 H NMR (500 MHz), 13 C NMR (125 MHz) spectra of 4q in DMSO-d6.

Fig. S38 ESI spectra of 4q.

Fig. S39 1 H NMR (500 MHz), 13 C NMR (125 MHz) spectra of **4r** in DMSO-*d6*.

Fig. S40 ESI spectra of 4r.

Fig. S41 1 H NMR (500 MHz), 13 C NMR(125 MHz) spectra of **5** in DMSO-d6.

Fig. S42 ESI spectra of 5.

HPLC data analysis

PDA Ch1 370nm 4nm			
Name	Ret. Time	Area %	Height %
4a	4.834	59.303	60.119
3a	5.660	28.032	29.618
nd	6.578	1.338	1.428
nd	8.007	3.399	3.462
nd	11.005	2.075	1.775
5	12.847	5.852	3.598
		100.000	100.000

PDA Ch1 370nm 4nm			
Name	Ret. Time	Area %	Height %
nd	4.438	1.602	3.106
4a	4.864	62.448	68.499
3a	5.695	18.934	17.237
nd	7.653	1.937	1.495
nd	9.710	2.315	1.889
5	12.953	12.763	7.774
		100.000	100.000

DA Ch1 370nm 4nm			
Name	Ret. Time	Area %	Height %
nd	4.412	4.922	7.927
4a	4.822	19.095	19.651
3a	5.649	65.719	66.310
nd	6.488	0.796	0.731
5	12.798	9.467	5.382
		100.000	100.000

DA Ch1 370nm 4nm			
Name	Ret. Time	Area %	Height %
4a	4.843	86.818	86.924
3a	5.696	4.098	4.432
nd	5.995	6.416	5.692
nd	6.561	0.681	1.077
nd	7.354	1.988	1.875
		100.000	100.000

Fig. S43 Comparison of reaction catalyzed conditions. A – H_2SO_4 (25 µL); B – H_2SO_4 (12.5 µL); C – HCl (25 µL); D – HCl (12.5 µL). nd – not determined product.

Fig. S44 Reaction conditions: non-catalyzed. A - 2 hours time reaction; B - 4 hours time reaction; C - 10 hours time reaction; nd - not determinate.

Fig. S45 Reaction conditions: acetic acid as catalyst. A – 2 hours time reaction; B – 4 hours time reaction; C – 10 hours time reaction and D – 24 hours time reaction; nd – not determinated.

Fig. S46 Reaction conditions: Lewis acid as catalyst (CaF₂): A - 2 hours time reaction; B - 4 hours time reaction; C - 10 hours time reaction and D - 24 hours time reaction; nd - not determinated.

Fig. S47 Reaction conditions: HCl as catalyst (12.5μL): A – 2 hours time reaction; B – 4 hours time reaction; C – 10 hours time reaction and D – 24 hours time reaction; nd – not determinated.

X-ray diffraction

Single crystal X-ray diffraction data for compound **4c** were collected on an Bruker D8 Venture diffractometer at room temperature, using graphite monochromatic MoK α radiation ($\lambda = 0.71069$ Å). Data collection and cell refinement were performed with Bruker Instrument Service v4.2.2 and APEX2 [ⁱ], respectively. Data reduction was carried out using SAINT [ⁱⁱ]. Empirical multiscan absorption correction using equivalent reflections was performed with the SADABS program [ⁱⁱⁱ]. The structure solutions and full-matrix least-squares refinements based on F^2 were performed with the SHELXS-97 and SHELXL-97 program packages [iv]. All atoms except hydrogen were refined anisotropically. Hydrogen atoms were treated by a mixture of independent and constrained refinement. The structure was drawn by Mercury program [v]. Details of data collection and refinement are listed in Table S1.

Empirical formula	$C_{49}H_{36}N_4O_{14}\\$	
Formula weight	904.82	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 9.2503(5) Å	$\alpha = 76.141(2)^{\circ}$
	b = 10.6790(6) Å	β= 77.031(2)°
	c = 13.4211(6) Å	$\gamma = 64.664(2)^{\circ}$
Volume	1152.10(10) $Å^3$	
Z	1	
Density (calculated)	1.304 Mg/m ³	
Absorption coefficient	0.10 mm ⁻¹	
F(000)	470	
Crystal size	0.28 x 0.17 x 0.05 mm	3

Table S1: Summary of crystal data and structure refinement of compound 4c.

Theta range for data collection	2.1 to 25.0°
Index ranges	-10<=h<=10,
	-12<=k<=12,
	-15<=l<=15
Reflections collected	32147
Independent reflections	4053 [R(int) = 0.075]
Completeness to theta = 25.06°	100 %
Max. and min. transmission	0.980 and 0.995
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4048 / 0 / 312
Goodness-of-fit on F^2	1.06
Final R indices [I>2sigma(I)]	$R_1 = 0.062, wR_2 = 0.199$
R indices (all data)	$R_1 = 0.099, wR_2 = 0.171$
Largest diff. peak and hole	0.52 and -0.23 e.Å ⁻³

Fig. S48 Molecular structure of compound **4c**. Thermal ellipsoids are drawn at 40 % of probability. Crystallization solvent molecule was omitted for sake of clarity.

^{[&}lt;sup>i</sup>] Bruker (2007). APEX2 v2014.5-0. Bruker AXS Inc., Madison, Wisconsin, USA.

^{[&}lt;sup>ii</sup>] Bruker (2013). SAINT v8.34A. Bruker AXS Inc., Madison, Wisconsin, USA.

^{[&}lt;sup>iii</sup>] Sheldrick, G.M. SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany, 1996.

^{[&}lt;sup>iv</sup>] Sheldrick, G.M. Acta Cryst. 2008, A64, 112-122.

[^v]Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J., *J. Appl. Cryst.* **2006**, 39, 453-457.