New Journal of Chemistry

Electronic Supplementary Information

Structural and electronic impact on the photophysical and biological properties of a series of Cu^I and Ag^I complexes with triphenylphosphine and pyrimidine-type thiones.

Panagiotis A. Papanikolaou,^{*a} Anastasios G. Papadopoulos,^{*b} Eleni G. Andreadou, ^c Antonios Hatzidimitriou,^a Philip J. Cox, ^d Anastasia A. Pantazaki^c and Paraskevas Aslanidis^{*a}

^a Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O.B. 135, GR-541 24 Thessaloniki, Greece. Fax: +30 2310 997738; E-mail: <u>panpapan@chem.auth.gr</u>, <u>hatzidim@chem.auth.gr</u>, <u>aslanidi@chem.auth.gr</u>

^b Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Applied Quantum Chemistry, P.O.B. 135, GR-541 24 Thessaloniki, Greece. Fax: +30 2310 997738; E-mail: anastp@chem.auth.gr

^c Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Biochemistry, P.O.B. 135, GR-541 24 Thessaloniki, Greece; E-mail: <u>natasa@chem.auth.gr</u>

^d School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, Scotland, United Kingdom. Email: <u>p.j.cox@rgu.ac.uk</u>

Table of ESI Contents

Table S1	Crystallographic details for the isolated Cu ^I and Ag ^I complexes.	S3
Table S2	Energetic and geometrical parameters of the two tautomeric forms of the sulfur-ligands.	S4
Table S3	Geometrical parameters of the optimized structures of compounds (7) and (5) and the expected $[Ag(PPh_3)_2(pymtH)_2]^+$ cation.	S5
Table S4	Geometrical parameters of the optimized structures of compound (6) and the expected $[Ag(PPh_3)_2(dmpymtH)_2]^+$ cation.	S6
Table S5	Geometrical parameters for the two Cu ^I -pymtH-cations.	S 7
Table S6	Geometrical parameters for the two Cu ^I -dmpymtH-cations.	S 8
Table S7	NBO atomic charges for the ligands and the studied Ag ^I -cations.	S9
Table S8	Frontier MOs representation for the optimized Cu ^I and Ag ^I complexes.	S10
Figure S1	Absorption spectra of Cu ^I and Ag ^I complexes in dichloromethane.	S11
Figure S2	Absorption and emission spectra of PPh ₃ , pymtH and dmpymtH and dmpmtH in dichloromethane and KBr.	S12
Figure S3	Normalized emission of the complexes and triphenylphosphine in dichloromethane	S13
Figure S4	Selected vertical excitations, involved MOs and the simulated absorption spectrum of complex (1).	S14

Compound	1.CHCl ₃	2.CH₃OH	3.CH ₃ OH	4.CH₃OH	5.CH₃OH	6.CH₃OH
Formula	$C_{45}H_{39}B_1CI_3Cu_1F_4N_4P_2S_2$	$C_{59}H_{53}B_1Cu_1F_4N_2O_1P_3S_1$	$C_{49}H_{50}B_{1}Cu_{1}F_{4}N_{4}O_{1}P_{2}S_{2}$	$C_{61}H_{57}B_1Cu_1F_4N_2O_1P_3S_1$	$C_{59}H_{53}Ag_1N_3O_4P_3S_1$	$C_{61}H_{57}Ag_1N_3O_4P_3S_1$
Formula weight	1018.62	1081.42	987.34	1109.47	1100.94	1129.00
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
Temperature	295 К	295 К	100(2) К	295 К	295 K	295 К
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å
Space group	Pī	Pī	Pī	Pī	Pī	Pī
Unit cell dimensions	a = 13.1382(8) Å b = 14.4016(9) Å c = 14.7271(13) Å $\alpha = 118.761(3)^{\circ}$ $\beta = 102.731(5)^{\circ}$ $\gamma = 91.598(4)^{\circ}$	a = 12.5375(5) Å b = 13.8679(5) Å c = 16.2676(6) Å $\alpha = 91.247(2)^{\circ}$ $\beta = 108.579(2)^{\circ}$ $\gamma = 90.431(2)^{\circ}$	a = 11.8722(8) Å b = 14.4982(10) Å c = 15.3775(11) Å α = 69.538(3)° β = 75.633(3)° γ = 85.560(4)°	a = 12.7182(5) Å b = 14.0670(6) Å c = 16.3036(6) Å $\alpha = 91.436(2)^{\circ}$ $\beta = 110.236(2)^{\circ}$ $\gamma = 90.267(2)^{\circ}$	a = 12.6902(6) Å b = 13.9321(6) Å c = 16.2986(8) Å $\alpha = 90.674(3)^{\circ}$ $\beta = 109.412(3)^{\circ}$ $\gamma = 91.674(2)^{\circ}$	a = 12.7507(4) Å b = 14.0470(5) Å c = 16.5484(6) Å $\alpha = 91.487(2)^{\circ}$ $\beta = 111.143(2)^{\circ}$ $\gamma = 92.621(2)^{\circ}$
Volume	2353.3(3) Å ³	2680.10(18) Å ³	2402.4(3) Å ³	2735.65(19) Å ³	2715.9(2) Å ³	2758.68(17) Å ³
Z	2	2	2	2	2	2
Absorption coefficient (µ)	0.843 mm ⁻¹	0.592 mm ⁻¹	0.665 mm ⁻¹	0.582 mm ⁻¹	0.547 mm ⁻¹	0.540 mm ⁻¹
Density (calculated)	1.43743 Mg/m ³	1.340 Mg/m ³	1.365 Mg/m ³	1.347 Mg/m ³	1.346 Mg/m ³	1.359 Mg/m ³
Crystal size	0.19 × 0.25 × 0.42 mm	0.31 × 0.34 × 0.42 mm	0.16 x 0.14 x 0.06 mm	0.31 x 0.36 x 0.40 mm	0.23× 0.26 × 0.34 mm	0.32 × 0.33 × 0.45 mm
Theta range for data collection	1.608 to 26.911°	1.714 to 30.655°	2.332 to 27.520°	1.332 to 28.903°	1.325 to 33.323°	1.321 to 29.798°
F(000)	1040	1120	1024	1152	1136	1168
Reflections collected	67144	54104	32418	48373	100427	75227
Independent reflections	10182 [R(int) = 0.044]	16311[R(int) = 0.050]	10986 [R(int) = 0.0519]	14219 [R(int) = 0.047]	20603[R(int) = 0.042]	14469 [R(int) = 0.030]
Completeness up to theta	100.0% (theta=26.911°)	99.4% (theta=25.137°)	99.8% (theta=25.242°)	99.6% (theta=28.036°)	98.4% (theta=32.323°)	98.7% (theta=25.030°)
Data/restraints/parameters	5762/0/555	8508/0/645	10986/0/583	7702/19/663	9123/0/637	8754/0/658
Goodness-of-fit on F ²	1.0474	0.9985	1.061	1.0661	1.000	0.9991
Final R indices [I>2 σ (I)]	R ₁ =0.0601, wR ₁ =0.0967	R ₁ =0.0647, wR ₁ =0.1154	R ₁ =0.0437, wR ₁ =0.1177	R ₁ =0.0546, wR ₁ =0.1073	R ₁ =0.0383, wR ₁ =0.0721	R ₁ =0.0523, wR ₁ =0.0970
R indices (all data)	R ₂ =0.1468, wR ₂ =0.2104	R ₂ =0.1117, wR ₂ =0.1323	R ₂ =0.0503, wR ₂ =0.1227	R ₂ =0.0981, wR ₂ =0.1235	R ₂ =0.0770, wR ₂ =0.0952	R ₂ =0.0987, wR ₂ =0.1148
Final weighting scheme	$\begin{split} & w = w' \times [1 - (\Delta F_{obs} \ / \ 6 \times \Delta F_{est})^2]^2 \\ & w' = [P_0 T_0'(x) + P_1 T_1'(x) + P_{n-1} T_{n-1}'(x)]^{-1} \\ & where \ x = F_{calc}^2 / F_{calc}^2_{max} \ \text{and} \\ & P_0 - P_{n-1} = 1.25, \ 1.25, \ 0.181 \end{split}$	w=(1/4F _{obs} ²)×1	w=1/[$\sigma^2(Fo^2)$ +(0.0695P) ² +1.28P] where P=(Max(Fo ² ,0) +2*Fc ²)/3	$\begin{split} & w=w'\times [1-(\Delta F_{obs}/6\times\Delta F_{est})^2]^2 \\ & w'=[P_0T_0'(x)+P_1T_1'(x)+P_{n-1}T_{n-1}'(x)]^{-1} \\ & where x=F_{calc}{}^2/F_{calc}{}^2_{max \ and} \\ & P_0-P_{n-1}=3.08,3.73,1.26 \end{split}$	w=(1/4F _{obs} ²)×1	$w=(1/4F_{obs}^{2})\times 1$
Largest diff. peak and hole	0.63, -0.41 e.Å ⁻³	0.82, – 0.62 e.Å ⁻³	1.135, – 0.527 e.Å ⁻³	0.86, – 0.72 e.Å ⁻³	1.27, – 0.51 e.Å ⁻³	1.51, – 0.61 e.Å ⁻³

Table S1 Crystallographic details for the isolated Cu^I and Ag^I complexes.

	pymtH _{thione}	pymtH _{thiol}	dmpymtH _{thione}	dmpymtH _{thiol}
E _{opt} , Hartrees	-662.0531	-662.0576	-740.6039	-740.6061
	C_{ip} - S_{thione} = 1.65797 Å	-	$C_{ip}-S_{thione} = 1.66211 \text{ Å}$	-
H	-	$C_{ip}-S_{thiol} = 1.76431 \text{ Å}$	-	C_{ip} - $S_{thiol} = 1.76804$ Å
cuı	-	S_{thiol} -H = 1.34422 Å	-	S_{thiol} -H = 1.34425 Å
Va	N_1 -H = 1.01314 Å	-	N_1 -H = 1.01359 Å	-
	$C_{ip}-N_1 = 1.39569 \text{ Å}$	$C_{ip}-N_1 = 1.33427 \text{ Å}$	$C_{ip}-N_1 = 1.39247 \text{ Å}$	C_{ip} -N ₁ = 1.33104 Å
	$C_{ip}-N_2 = 1.36851 \text{ Å}$	$C_{ip}-N_2 = 1.33414 \text{ Å}$	$C_{ip}-N_2 = 1.36331 \text{ Å}$	$C_{ip}-N_2 = 1.33054 \text{ Å}$
E _{opt} , Hartrees	-662.0809	-662.0695	-740.6282	-740.6161
	C_{ip} - S_{thione} = 1.68796 Å	-	C_{ip} - S_{thione} = 1.69165 Å	-
4	-	C_{ip} - $S_{thiol} = 1.76791 \text{ Å}$	-	C_{ip} - $S_{thiol} = 1.77172$ Å
5	-	S_{thiol} -H = 1.35905 Å	-	S_{thiol} -H = 1.35871 Å
A	N_1 -H = 1.02878 Å	-	N_1 -H = 1.02732 Å	-
	$C_{ip}-N_1 = 1.37711 \text{ Å}$	$C_{ip}-N_1 = 1.33312 \text{ Å}$	$C_{ip}-N_1 = 1.37647 \text{ Å}$	C_{ip} -N ₁ = 1.32989 Å
	$C_{ip}-N_2 = 1.35548$ Å	$C_{ip}-N_2 = 1.33455 \text{ Å}$	$C_{ip}-N_2 = 1.35012 \text{ Å}$	$C_{ip}-N_2 = 1.33126 \text{ Å}$
E _{opt} , Hartrees	-662.0846	-662.0709	-740.6316	-740.6174
	C_{ip} - S_{thione} = 1.69256 Å	-	C_{ip} - S_{thione} = 1.69597 Å	-
Н	-	C_{ip} - $S_{thiol} = 1.76886 \text{ Å}$	-	C_{ip} - $S_{thiol} = 1.77251$ Å
le0	-	S_{thiol} -H = 1.36139 Å	-	S_{thiol} -H = 1.36099 Å
Σ	N_1 -H = 1.03108 Å	-	N_1 -H = 1.02986 Å	-
	$C_{ip}-N_1 = 1.37517 \text{ Å}$	$C_{ip}-N_2 = 1.33288 \text{ Å}$	$C_{ip}-N_1 = 1.37401 \text{ Å}$	$C_{ip}-N_1 = 1.32958 \text{ Å}$
	$C_{in}-N_2 = 1.35355 \text{ Å}$	$C_{in}-N_2 = 1.33460 \text{ Å}$	$C_{in}-N_2 = 1.34872 \text{ Å}$	$C_{in}-N_2 = 1.33140 \text{ Å}$

Table S2 Energetic and geometrical parameters in the selected media and visualization of the two tautomeric forms of the sulfur-ligands as they resulted from DFT calculations.

$[Ag(PPh_3)_2(pymtH)]^+ (7)$	$[Ag(PPh_3)_2(pymtH)_2]^+$	[Ag(PPh ₃) ₃ (pymtH)] ⁺ (5)
Ag-S = 2.59843 Å	$Ag-S_1 = 2.69371 \text{ Å}$	Ag-S = 2.78708 Å
$Ag-P_1 = 2.45015 \text{ Å}$	$Ag-S_2 = 2.72814 \text{ Å}$	$Ag-P_2 = 2.53540 \text{ Å}$
$Ag-P_2 = 2.46475 \text{ Å}$	$Ag-P_2 = 2.49245 \text{ Å}$	$Ag-P_1 = 2.57620 \text{ Å}$
Ag-N ₂ = 3.26057 Å	$Ag-P_1 = 2.48423 \text{ Å}$	$Ag-P_3 = 2.54077 \text{ Å}$
C_{ip} -S = 1.68331 Å	C_{ip} - $S_1 = 1.70525 \text{ Å}$	C_{ip} -S = 1.68567Å
N_1 -H = 1.01461 Å	C_{81} - $S_2 = 1.70822 \text{ Å}$	C_{ip} -N ₁ = 1.37976 Å
C_{ip} -N ₁ = 1.37969 Å	C_{ip} -N ₃ = 1.37063 Å	C_{ip} -N ₂ = 1.35470 Å
C_{ip} -N ₂ = 1.35299 Å	C_{ip} -N ₄ = 1.34515 Å	$S-Ag-P_1 = 103.30^\circ$
$S-Ag-P_1 = 114.40^\circ$	C_{ip} -N ₂ = 1.37103 Å	$S-Ag-P_2 = 93.00^{\circ}$
$S-Ag-P_2 = 113.09^{\circ}$	C_{ip} -N ₁ = 1.34379 Å	$S-Ag-P_3 = 98.64^{\circ}$
P_1 -Ag- $P_2 = 132.47^\circ$	S_2 -Ag- $P_2 = 110.67^\circ$	P_2 -Ag- $P_3 = 120.44^{\circ}$
	S_1 -Ag- $P_2 = 104.14^{\circ}$	P_1 -Ag- $P_3 = 120.60^\circ$
	S_2 -Ag- $P_1 = 103.71^\circ$	P_2 -Ag- $P_1 = 112.71^\circ$
	S_1 -Ag- $P_1 = 113.17^\circ$	
	P_2 -Ag- $P_1 = 125.51^\circ$	

Table S3 Geometrical parameters of the optimized structures for the isolated $[Ag(PPh_3)_2(pymtH)]^+$ (7) and $[Ag(PPh_3)_3(pymtH)]^+$ (5) and the expected $[Ag(PPh_3)_2(pymtH)_2]^+$ products.

$[Ag(PPh_3)_2(dmpymtH)_2]^+$	$\left[\mathrm{Ag}(\mathrm{PPh}_3)_3(\mathrm{dmpymtH})\right]^+ (6)$
The set	
$Ag-S_1 = 2.69500 \text{ Å}$	Ag-S = 2.66402 Å
$Ag-S_2 = 2.69016 \text{ Å}$	$Ag-P_1 = 2.56414 \text{ Å}$
$Ag-P_1 = 2.50405 \text{ Å}$	$Ag-P_3 = 2.55924 \text{ Å}$
$Ag-P_2 = 2.50106 \text{ Å}$	$Ag-P_2 = 2.54357 \text{ Å}$
C_{ip} - $S_1 = 1.71567 \text{ Å}$	C_{ip} -S = 1.69118Å
$C_{ip}-S_2 = 1.71206 \text{ Å}$	$C_{ip}-N_2 = 1.37695 \text{ Å}$
C_{ip} -N ₃ = 1.36829 Å	$C_{ip}-N_1 = 1.34763 \text{ Å}$
C_{ip} -N ₄ = 1.33826 Å	$S-Ag-P_3 = 106.30^{\circ}$
$C_{ip}-N_1 = 1.33402 \text{ Å}$	$S-Ag-P_1 = 95.83^{\circ}$
C_{ip} -N ₂ = 1.37085 Å	$S-Ag-P_2 = 110.59^{\circ}$
S_1 -Ag- $P_1 = 112.27^\circ$	P_1 -Ag- $P_2 = 113.29^\circ$
S_2 -Ag- $P_1 = 107.95^{\circ}$	P_3 -Ag- $P_2 = 117.97^\circ$
S_1 -Ag-P ₂ = 107.39°	P_1 -Ag- $P_3 = 110.38^{\circ}$
S_2 -Ag- $P_2 = 111.06^{\circ}$	
P_1 -Ag- $P_2 = 119.37^{\circ}$	

Table S4 Geometrical parameters of the optimized structures for the isolated $[Ag(PPh_3)_3(dmpymtH)]^+$ (6) and the expected $[Ag(PPh_3)_2(dmpymtH)_2]^+$ products resulted from DFT calculations.

$[Cu(PPh_3)_2(pymtH)_2]^+(1)$	[Cu(PPh ₃) ₃ (pymtH)] ⁺ (2)
A REAL PROVIDE A REAL PROVIDA REAL PROVIDE A REAL PROVIDO A REAL PROVIDO A REAL PROVIDO A REAL PROVIDO A REAL P	
$Cu-S_1 = 2.41485 \text{ Å}$	Cu-S = 2.52914 Å
$Cu-S_2 = 2.42846 \text{ Å}$	$Cu-P_2 = 2.36001 \text{ Å}$
$Cu-P_2 = 2.3381 \text{ Å}$	$Cu-P_3 = 2.37649 \text{ Å}$
$Cu-P_1 = 2.32289 \text{ Å}$	$Cu-P_1 = 2.42174 \text{ Å}$
C_{ip} -S ₁ = 1.70402 Å	C_{ip} -S = 1.69243 Å
C_{ip} -S ₂ = 1.70895 Å	C_{ip} -N ₂ = 1.35194 Å
$C_{ip}-N_3 = 1.36960 \text{ Å}$	$C_{ip}-N_1 = 1.37706 \text{ Å}$
$C_{ip}-N_4 = 1.34322 \text{ Å}$	$S-Cu-P_3 = 101.32^{\circ}$
$C_{ip}-N_1 = 1.34557 \text{ Å}$	$S-Cu-P_1 = 103.99^{\circ}$
$C_{ip}-N_2 = 1.36917 \text{ Å}$	$S-Cu-P_2 = 95.25^{\circ}$
S_1 -Cu-P ₁ = 110.21°	P_1 -Cu- $P_2 = 112.12^\circ$
S_2 -Cu-P ₁ = 102.81°	P_3 -Cu- $S_{75} = 101.32^\circ$
S_1 -Cu-P ₂ = 104.41°	P_1 -Cu- $S_{75} = 103.99^{\circ}$
S_2 -Cu-P ₂ = 112.20°	
P_1 -Cu- $S_{75} = 110.21^{\circ}$	
P_2 -Cu-S ₈₀ = 112.20°	

Table S5 Geometrical parameters for the two Cu^I-pymtH-cations resulted from DFT calculations.

$[Cu(PPh_3)_2(dmpymtH)_2]^+ (3)$	[Cu(PPh ₃) ₃ (dmpymtH)] ⁺ (4)
$Cu-S_2 = 2.41485 \text{ Å}$	Cu-S = 2.41280 Å
$Cu-S_1 = 2.42846 \text{ Å}$	$Cu-P_2 = 2.39437 \text{ Å}$
$Cu-P_1 = 2.3381 \text{ Å}$	$Cu-P_3 = 2.37665 \text{ Å}$
$Cu-P_2 = 2.32289 \text{ Å}$	$Cu-P_1 = 2.40110 \text{ Å}$
C_{ip} - $S_2 = 1.70402 \text{ Å}$	C_{ip} -S = 1.69490 Å
C_{ip} - $S_1 = 1.70895 \text{ Å}$	$C_{ip}-N_2 = 1.37445 \text{ Å}$
$C_{ip}-N_1 = 1.33656 \text{ Å}$	$C_{ip}-N_1 = 1.34652 \text{ Å}$
C_{ip} -N ₂ = 1.36791 Å	$S-Cu-P_3 = 111.76^{\circ}$
$C_{ip}-N_3 = 1.36619 \text{ Å}$	$S-Cu-P_1 = 106.98^{\circ}$
$C_{ip}-N_2 = 1.33914 \text{ Å}$	$S-Cu-P_2 = 95.22^{\circ}$
S_1 -Cu- $P_1 = 113.55^{\circ}$	P_1 -Cu- $P_2 = 108.97^{\circ}$
S_2 -Cu-P ₁ = 106.60°	P_3 -Cu-S = 111.76°
S_1 -Cu-P ₂ = 103.94°	P_2 -Cu-S = 95.22°
S_2 -Cu-P ₂ = 109.66°	P_1 -Cu-S = 106.98°
P_2 -Cu-S ₂ = 110.21°	
P_1 -Cu-S ₁ = 112.20°	

Table S6 Geometrical parameters for the two Cu^{I} -dmpymtH-cations resulted from DFT calculations.

	qs	$\Delta q_s{}^a$	q _{Npyr}	Δq_{Npyr}	q _P	$\Delta q_P{}^b$	\mathbf{q}_{Ag}
pymtH	-0.16	-	-0.46	-	-	-	-
dmpymtH	-0.18	-	-0.49	-	-	-	-
PPh ₃	-	-	-	-	+0.91	-	-
$\left[\operatorname{Ag}(\operatorname{PPh}_3)_2(\operatorname{pymtH})\right]^+(7)$	-0.13	+0.03	-0.48	-0.02	+0.95	+0.04	+0.29
$[Ag(PPh_3)_2(pymtH)_2]^+$	-0.17	-0.01	-0.46	+0.00	+0.98	+0.07	+0.019
					+0.94	+0.03	
$\left[\operatorname{Ag}(\operatorname{PPh}_3)_3(\operatorname{pymtH})\right]^+(5)$	-0.17	-0.01	-0.49	-0.03	+0.95	+0.04	+0.20
					+0.95	+0.04	
$[Ag(PPh_3)_2(dmpymtH)_2]^+$	-0.20	-0.02	-0.49	0.00	+0.98	+0.07	+0.03
	-0.19	-0.01					
					+0.97	+0.06	
$\left[\operatorname{Ag}(\operatorname{PPh}_3)_3(\operatorname{dmpymtH})\right]^+$ (6)	-0.11	+0.07	-0.49	+0.00	+0.97	+0.06	+0.06
					+0.98	+0.07	

Table S7 NBO atomic charges for the ligands and the studied Ag^I-cations.

^a Δq_S (= $q_{Scoordinated thione} - q_{Sfree thione}$) refers to the difference in the nbo charge of the sulfur atom between the coordinated and the respective free thione. ^b Δq_P (= $q_{Pcoordinated phosphine} - q_{Pfree phosphine}$) refers to the difference in the nbo charge of the phosphorus atom between the coordinated PPh₃ and the free phosphine.

Complex cation	HOMO-1	НОМО	LUMO	LUMO+1
$[Cu(PPh_3)_2(pymtH)_2]^+(1)$				
$\left[\operatorname{Cu}(\operatorname{PPh}_3)_3(\operatorname{pymtH})\right]^+(2)$				
[Cu(PPh ₃) ₂ (dmpymtH) ₂] ⁺ (3)				
$[Cu(PPh_3)_3(dmpymtH)]^+$ (4)				
$\left[\operatorname{Ag}(\operatorname{PPh}_3)_3(\operatorname{pymtH})\right]^+(5)$				
$[Ag(PPh_3)_3(dmpymtH)]^+$ (6)				
$\left[\operatorname{Ag}(\operatorname{PPh}_3)_2(\operatorname{pymtH})\right]^+$ (7)				
$\left[\operatorname{Ag}(\operatorname{PPh}_3)_2(\operatorname{pymtH})_2\right]^+$				
[Ag(PPh ₃) ₂ (dmpymtH) ₂] ⁺				

Table S8 Frontier MOs representation (0.02 isovalue) for the optimized Cu^{I} and Ag^{I} complexes.

Figure S1. Normalized absorption spectra of Cu^I-pymtH complexes (left diagram) and two of the isolated Ag^I-complexes (right diagram) in dichloromethane.

Figure S2. Normalized absorption intensity of PPh₃, pymtH and dmpymtH in dichloromethane and normalized emission intensity of dmpymtH in dichloromethane ($\lambda_{exc} = 350$ nm).

Figure S3. Normalized emission of the Cu(I) and Ag(I) complexes under study in dichloromethane after photoexcitation at 300 nm. Emission of PPh₃ in dichloromethane (black line, $\lambda_{exc} = 300$ nm) is also given for comparison reasons.

Excitation	E/eV	λ/nm	Orbital Nature	Character	OS, f
HOMO → LUMO	2.776	447	$3d_{Cu}/\pi_{PPh3} \rightarrow \pi^*_{(pymtH)}$	MLCT/LLCT	0.0014
HOMO \rightarrow LUMO+1, HOMO-1 \rightarrow LUMO	2.842	436	$3d_{\rm Cu}/\pi_{\rm PPh3} \to \pi *_{(pymtH)}$	MLCT/LLCT	0.0266
$\mathrm{HOMO} \rightarrow \mathrm{LUMO+1}, \mathrm{HOMO-1} \rightarrow \mathrm{LUMO+1}, \mathrm{HOMO-2} \rightarrow \mathrm{LUMO+1}$	2.872	432	$3d_{Cu}/\pi_{PPh3} \to \pi \ast_{(pymtH)}$	MLCT/LLCT	0.0005
$HOMO-2 \rightarrow LUMO$	2.930	423	$3d_{Cu} \rightarrow \pi^*_{(pymtH)}$	MLCT	0.0021
HOMO-1 \rightarrow LUMO+1, HOMO-2 \rightarrow LUMO+1	3.021	411	$3d_{Cu}/\pi_{PPh3} \rightarrow \pi^*_{(pymtH)}$	MLCT/LLCT	0.0014
$HOMO-2 \rightarrow LUMO+2$	3.675	337	$3d_{Cu} \rightarrow \pi^*_{(pymtH)}$	MLCT	0.0227
HOMO-7 \rightarrow LUMO, HOMO-1 \rightarrow LUMO+3	3.832	323	$\pi_{\text{PPh3}} \rightarrow \pi^*_{(\text{pymtH})}$	LLCT	0.0225
$HOMO \rightarrow LUMO+4$	4.367	284	$3d_{Cu}/\pi_{PPh3} \rightarrow \pi^*_{(PPh3)}$	MLCT/IL	0.0968
HOMO-3 \rightarrow LUMO+3	4.536	273	$3d_{Cu}/\pi_{PPh3}/\pi_{(pymtH)} \rightarrow \pi^*_{(pymtH)}$	MLCT/LLCT/IL	0.0777

Figure S4 Up: Selected vertical excitations in the absorption spectra of $[Cu(PPh_3)_2(pymtH)_2]^+$ (1) calculated at the PBE1PBE/6-31G(d),SDD level of theory. Down left: Representation of MOs of $[Cu(PPh_3)_2(pymtH)_2]^+$ (1) involved in selected singlet-singlet transitions along with the calculated excitation wavelengths and CI coefficients. Down right: Experimental absorption spectrum of $[Cu(PPh_3)_2(pymtH)_2]^+$ (1) along with the calculated excitation energies appearing as vertical lines.