Synthesis and characterisation of aluminium (III) imine bis(phenolate) complexes with application for the Polymerisation of rac-LA

T. R. Forder and M. D. Jones*

Supplementary Information

1. Experimental 2
1.1. General Procedures 2
1.2. NMR Spectroscopy 2
1.3. Gel Permeation Chromatography (GPC) 2
1.4. Mass Spectrometry 2
1.5. Elemental Analysis 2
1.6. Synthetic Procedures 3
1.6.1. Starting Materials 3
1.6.2. Imine bis(phenolate) ligands 4
1.6.3. Aluminium imine bis(phenolate) complexes 7
1.7. Polymerisation Trials 8
1.7.1. Polymerisation Procedure 8
1.7.2. Homonucelar-decoupled ${ }^{1} \mathrm{H}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectroscopy 8
1.7.3. Kinetics-scale solvent polymerisations of rac-lactide \& L-lactide 9
2. ${ }^{1} \mathrm{H}$ NMR Spectra. 10
3. Crystal Data and Structure Refinement 14

1. Experimental

1.1. General Procedures

Trimethylaluminium (2M in hexane, Aldrich) was used as supplied. All other starting materials were used as received from either Sigma Aldrich or TCI, Ltd. rac-lactide (Aldrich) was recrystallized from dry toluene and sublimed twice prior to use in polymerisation reactions.
Preparation of all metal complexes and subsequent ROP of rac-lactide were performed under an inert atmosphere of argon using standard Schlenk or glove-box techniques. All solvents used in the preparation of metal complexes were dry and obtained via an SPS (Solvent Purification System).

1.2. NMR Spectroscopy

Solution ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR experiments were performed at ambient temperature unless otherwise stated using a Bruker Avance-300, Bruker DRX400 or Bruker DRX500 MHz FT-NMR spectrometer with samples dissolved in CDCl_{3}, DMSO- d_{6}, $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$ or $\mathrm{C}_{6} \mathrm{D}_{6} . \mathrm{CDCl}_{3}$ for analysis of complexes was distilled from calcium hydride prior to use. $\mathrm{C}_{6} \mathrm{D}_{6}$ for complex analysis was distilled and stored over sodium. Wilmad 5 mm NMR tubes were used for ligand and polymer characterisation, while NMR tubes fitted with Young's taps were used for complexes and kinetic experiments. All chemical shifts are quoted as δ values in ppm relative to residual protio solvent resonances and all coupling constants are given in Hertz.
Homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker DRX400 or Bruker DRX500 MHz FT-NMR spectrometer and the methine region of the spectra analysed for the determination of the P_{r} value using equations given in the literature. ${ }^{1}$

1.3. Gel Permeation Chromatography (GPC)

GPC analyses were performed on a Polymer Laboratories PL-GPC 50 integrated system using PLgel $5 \mu \mathrm{~m}$ MIXED-D $300 \times 7.5 \mathrm{~mm}$ column at $35^{\circ} \mathrm{C}$, using THF as the solvent at a flow rate of $1.0 \mathrm{ml} / \mathrm{min}$. The polydispersity index (PDI) was determined from M_{n} / M_{w} where M_{n} is the number average molecular weight and M_{w} is the weight average molecular weight. The polymers were referenced to 11 narrow molecular weight polystyrene standards with a range of $M_{w} 615-568000 \mathrm{Da}$.

1.4. Mass Spectrometry

High-resolution mass spectrometry of ligands, and intermediates thereof, were recorded on a micrOTOFQ electrospray quadrupole time-of-flight (ESI-TOF) spectrometer. The samples were dissolved in methanol and the spectra recorded in positive mode.

1.5. Elemental Analysis

Elemental analysis was performed by Mr. A. Carver at the University of Bath, on an Exeter Analytical CE440 Elemental Analyzer, or by Mr Stephen Boyer (London Metropolitan University).

1.6. Synthetic Procedures

1.6.1. Starting Materials

Salicylammonium acetate ${ }^{2}$ and 3,5-dimethyl-2-hydroxybenzyaldehyde ${ }^{3}$ were synthesised according to literature procedures.

Salicylaldoxime ($5.8 \mathrm{~g}, 42.3 \mathrm{mmol}$) was dissolved in Acetic acid ($200 \mathrm{ml}, 3.47 \mathrm{mmol}$) before the addition of zinc dust $(17.0 \mathrm{~g})$ at a slow rate and with vigorous stirring to minimise the exotherm. (Figure 5.1) The reaction mixture was left to stir at room temperature for 6 hours before removing the zinc dust via filtration and most of the acetic acid by rotary evaporation. The resulting yellow oil was allowed to cool to room temperature before adding diethyl ether to cause a white solid to form. The white solid salicylammonium acetate ($5.53 \mathrm{~g}, 30.2 \mathrm{mmol}, 71 \%$) was isolated via filtration, washed with diethyl ether and dried under high vacuum.
${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO) $1.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}(\mathrm{C}=\mathrm{O})\right.$), $3.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{~N}\right), 6.72$ (1 H , td J = 7.5, 0.9 Hz, Ar-H), $6.84(1 \mathrm{H}, \mathrm{dd} \mathrm{J}=7.5,0.9 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{td} \mathrm{J}=7.5,0.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, 7.18 (1H, dd J = 7.5, $0.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(d_{6}\right.$-DMSO) $22.9\left(\mathrm{H}_{3} \mathrm{C}(\mathrm{C}=\mathrm{O})\right), 41.3\left(\mathrm{PhCH}_{2} \mathrm{~N}\right), 116.2,118.2,124.6,129.0$, 129.5 (Ar-CH), 158.0 (Ar-O), 174.1 ($\mathrm{C}=\mathrm{O}$).

2,4-dimethylphenol ($10.0 \mathrm{~g}, 81.9 \mathrm{mmol})$, magnesium chloride ($11.7 \mathrm{~g}, 123.0 \mathrm{mmol}$) and triethylamine ($31.1 \mathrm{~g}, 307.0 \mathrm{mmol}$) were charged to a round-bottom flask and stirred with acetonitrile (400 ml). Paraformaldehyde ($16.6 \mathrm{~g}, 552.0 \mathrm{mmol}$) was added and the reaction mixture refluxed for 4 hours. (Figure 5.3) The solution was cooled before the addition of 5% aqueous hydrochloric acid $(250 \mathrm{ml})$. The product was extracted using diethyl ether ($2 \times 200 \mathrm{ml}, 2 \times 150 \mathrm{ml}$). Removal of the solvent by rotary evaporation yielded a yellow oil that was further purified via flash chromatography ($9.0 \mathrm{~g}, 59.9 \mathrm{mmol}, 73 \%$ yield)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 2.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{Ph}), 2.27(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{Ph}), 7.08(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 7.15(1 \mathrm{H}$, s, Ar-H), 9.74 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$), 11.08 ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) 14.6\left(\mathrm{H}_{3} \mathrm{C}-\mathrm{Ph}\right), 20.1\left(\mathrm{H}_{3} \mathrm{C}-\mathrm{Ph}\right), 119.7$ ($\mathrm{Ar}-\mathrm{CH}$), 126.4 ($\mathrm{Ar}-\mathrm{C}$), 128.8 (Ar-C), 131.8 (Ar-C), 139.0 (Ar-CH), 157.9 (Ar-OH), 157.9 (CHO).

3,5-di-tert-butyl-2-hydroxybenzaldehyde ($7.00 \mathrm{~g}, 29.9 \mathrm{mmol}$) was dissolved in ethanol (75 ml) before the addition of a 10% molar excess of hydroxylamine hydrochloride
($2.28 \mathrm{~g}, 32.9 \mathrm{mmol}$) and sodium acetate $(2.70 \mathrm{~g}, 32.9 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 4 hours before the solvent was removed by rotary evaporation. Further drying under high vacuum yielded a white solid that was washed with water to remove all salts. The remaining solid was dried under vacuum to yield 3,5-di-tert-butyl-2-hydroxybenzyaldoxime ($7.40 \mathrm{~g}, 29.7 \mathrm{mmol}, 99 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 1.31\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 7.02(1 \mathrm{H}, \mathrm{d}(\mathrm{J}=2.4 \mathrm{~Hz}), \mathrm{Ar}-$ H), $7.37(1 \mathrm{H}, \mathrm{d}(\mathrm{J}=2.4 \mathrm{~Hz}), \mathrm{Ar}-\mathrm{H}), 8.25(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N}), 10.1(1 \mathrm{H}, \mathrm{bs}, \mathrm{Ar}-\mathrm{OH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) 29.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 116.0 ($\mathrm{Ar}-\mathrm{C}$), $125.9(\mathrm{Ar}-\mathrm{C}), 126.6(\mathrm{Ar}-\mathrm{C}), 136.9(\mathrm{Ar}-\mathrm{CH}), 141.6(\mathrm{Ar}-\mathrm{CH}), 154.5(\mathrm{CH}=\mathrm{N})$, 154.7 (Ar-O).

3,5-di-tert-butyl-2-hydroxybenzaldoxime $(7.40 \mathrm{~g}, 29.7 \mathrm{mmol})$ was dissolved in acetic acid (250 ml) and cooled in a water bath ($15{ }^{\circ} \mathrm{C}$). Zinc dust (12.0 g) was added gradually to the solution and the reaction mixture stirred for 24 hours. The suspension was filtered to remove the zinc metal and acetic acid removed via rotary evaporation to give an orange oil. Further drying under high vacuum yielded a white solid ($8.60 \mathrm{~g}, 29.1 \mathrm{mmol}, 98 \%$ yield)
${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) 1.24\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.35\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)$, $3.89\left(2 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{CH}_{2}\right), 7.03(1 \mathrm{H}, \mathrm{d}(\mathrm{J}=2.2 \mathrm{~Hz}), \operatorname{Ar}-\mathrm{H}), 7.12(1 \mathrm{H}, \mathrm{d}(\mathrm{J}=2.2 \mathrm{~Hz}), \operatorname{Ar}-\mathrm{H})$.

1.6.2. Imine bis(phenolate) ligands

$\mathrm{H}_{2} 1$
Salicylammonium acetate $(2.00 \mathrm{~g}, 10.9 \mathrm{mmol})$ and sodium bicarbonate $(3.67 \mathrm{~g}, 43.7$ $\mathrm{mmol})$ were mixed with Ethanol (100ml) and heated to $60^{\circ} \mathrm{C}$. Salicylaldehyde (1.33g, $10.9 \mathrm{mmol})$ was added drop-wise to the reaction mixture and left to stir for 2 hours. The reaction mixture was then hot filtered and washed with hot ethanol to remove insoluble salts. Solvent was removed by rotary evaporation and the resulting yellow solid washed with distilled water to remove any soluble sodium salts. The disalicylaldimine, a yellow solid, was washed with hexane to remove unreacted aldehyde and dried under high vacuum (1.68g, $7.39 \mathrm{mmol}, 68 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(d_{6}\right.$-DMSO) $4.73\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{~N}\right), 6.85(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.15(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.32$ $(1 \mathrm{H}, \mathrm{td} \mathrm{J}=7.5,0.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.45(1 \mathrm{H}, \mathrm{dd} \mathrm{J}=0.9,7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.63(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N})$, 9.65 (1H, bs, OH), 13.72 (1H, bs, OH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(d_{6}\right.$-DMSO) $57.03\left(\mathrm{CH}_{2} \mathrm{~N}=\mathrm{C}\right), 115.1,116.5,118.4,118.6,119.0,124.4$, 128.5, 129.3, 131.6, 132.3 (Ar-CH), 155.2 (Ar-O), 160.89 ($\mathrm{CH}=\mathrm{N}$), 166.1 (Ar-O).
m / z calc. $\left[\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}+\mathrm{Na}\right]^{+}=250.0844$, found 250.0831 .

$\mathrm{H}_{2} 2$
Salicylammonium acetate $(2.00 \mathrm{~g}, 10.9 \mathrm{mmol})$ and sodium bicarbonate $(3.67 \mathrm{~g}, 43.7$ $\mathrm{mmol})$ were mixed with ethanol (80 ml) and heated to $60^{\circ} \mathrm{C} .3,5$-dimethyl-2hydroxybenzyaldehyde ($1.64 \mathrm{~g}, 10.9 \mathrm{mmol}$) in ethanol (20 ml) was added drop-wise to the reaction mixture and left to stir for 2 hours. The reaction mixture was then hot filtered and washed with hot ethanol to remove insoluble NaHCO_{3}. Solvent was removed by rotary evaporation and the resulting yellow solid washed with distilled water to remove any soluble sodium salts. The yellow solid was washed with hexane to remove unreacted aldehyde and dried under high vacuum (1.87g, $7.32 \mathrm{mmol}, 67 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6} 2.11$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{Ph}$), 2.21 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{Ph}$), 4.72 ($2 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{2}$), 6.76-6.86 ($2 \mathrm{H}, \mathrm{m},{ }^{\mathrm{H}} \mathrm{Ar}-\mathrm{H}$), 7.03 ($1 \mathrm{H}, \mathrm{s},{ }^{\mathrm{Me}} \mathrm{Ar}-\mathrm{H}$), $7.05\left(1 \mathrm{H}, \mathrm{s},{ }^{\mathrm{Me}} \mathrm{Ar}-\mathrm{H}\right), 8.55(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (DMSO-d ${ }_{6}$) $14.8\left(\mathrm{H}_{3} \mathrm{C}-\mathrm{Ar}\right), 19.7\left(\mathrm{H}_{3} \mathrm{C}\right.$-Ar), $57.1\left(\mathrm{CH}_{2} \mathrm{~N}\right), 115.5,117.9$, 119.4, 125.0, 125.0, 126.7, 128.7, 129.5, 129.6, 134.3 (Ar-CH), 155.6, 157.2 (Ar-O), 166.6 (CH=N).
m / z calc. $\left[\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}=256.1338$, found 256.1328

$\mathrm{H}_{2} 3$
Salicylammonium acetate $(2.00 \mathrm{~g}, 10.9 \mathrm{mmol})$ and sodium bicarbonate $(3.67 \mathrm{~g}, 43.7$ mmol) were mixed with ethanol (80 ml) and heated to $60^{\circ} \mathrm{C}$. 3,5-di-tert-butyl-2hydroxybenzyaldehyde ($2.56 \mathrm{~g}, 10.9 \mathrm{mmol}$) in ethanol (20 ml) was added drop-wise to the reaction mixture and left to stir for 2 hours. The reaction mixture was then hot filtered and washed with hot ethanol to remove insoluble NaHCO_{3}. Solvent was removed by rotary evaporation and the resulting yellow solid washed with distilled water to remove any soluble sodium salts. The yellow solid was recrystallized from methanol to remove any unreacted aldehyde ($1.31 \mathrm{~g}, 3.86 \mathrm{mmol}, 35 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $1.26\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.35\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 4.71\left(2 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{2}\right), 6.77-6.86$ $\left(2 \mathrm{H}, \mathrm{m},{ }^{\mathrm{H}} \mathrm{Ar}-\mathrm{H}\right), 7.09-7.21\left(2 \mathrm{H}, \mathrm{m},{ }^{\mathrm{H}} \mathrm{Ar}-\mathrm{H}\right), 7.28\left(1 \mathrm{H}, \mathrm{s},{ }^{\text {tBu }} \mathrm{Ar}-\mathrm{H}\right), 7.29\left(1 \mathrm{H}, \mathrm{s},{ }^{\text {tBu }} \mathrm{Ar}-\mathrm{H}\right)$, 8.63 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) 29.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 57.3 ($\mathrm{CH}_{2}-\mathrm{N}$), 115.6, 118.1, 119.4, 124.8, 126.6, 128.5, 128.7, 129.9 (Ar-CH), 136.0, 139.7 (Ar-C), 155.7, 158.3 (Ar-O), 167.6 (CH=N).
m / z calc. $\left[\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}=340.2277$, found 340.2264 .

Salicylammonium acetate $(2.00 \mathrm{~g}, 10.9 \mathrm{mmol})$ and sodium bicarbonate $(3.67 \mathrm{~g}, 43.7$ mmol) were mixed with ethanol (80 ml) and heated to $60^{\circ} \mathrm{C}$. 3,5-di-tert-butyl-2hydroxybenzyaldehyde ($2.56 \mathrm{~g}, 10.9 \mathrm{mmol}$) in ethanol (20 ml) was added drop-wise to the reaction mixture and left to stir for 2 hours. The reaction mixture was then hot filtered and washed with hot ethanol to remove insoluble NaHCO_{3}. Solvent was removed by rotary evaporation and the resulting yellow solid washed with distilled water to remove any soluble sodium salts. The yellow solid was recrystallized from methanol to remove any unreacted aldehyde (1.31g, $3.86 \mathrm{mmol}, 35 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $4.77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{N}\right)$, 6.79-6.89 ($2 \mathrm{H}, \mathrm{m},{ }^{\mathrm{H}} \mathrm{Ar}-\mathrm{H}$), 7.15-7.25 ($2 \mathrm{H}, \mathrm{m}$,

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (DMSO-d ${ }_{6}$) 53.5 ($\mathrm{CH}_{2}-\mathrm{N}$), 115.6, 117.0, 117.1, 119.5, 122.9, 125.1 (ArCH), 129.8, 130.1 (Ar-Cl), 130.7, 133.3 (Ar-CH), 155.9 (CH=N), 164.2, 165.6 (Ar-O). m / z calc. $\left[\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{Cl}_{2}+\mathrm{Na}\right]^{+}=318.0065$, found 318.0066 .

3,5-di-tert-butyl-2-hydroxybenzylammonium acetate ($2.00 \mathrm{~g}, 6.77 \mathrm{mmol}$) and sodium bicarbonate ($2.28 \mathrm{~g}, 27.1 \mathrm{mmol}$) were mixed in ethanol (80 ml) and heated $\left(70{ }^{\circ} \mathrm{C}\right.$). 3,5-di-ter-butyl-2-hydroxybenzyaldehyde ($1.59 \mathrm{~g}, 6.77 \mathrm{mmol}$) was dissolved in ethanol (20 ml) and charged slowly to the reaction mixture. The reaction was stirred at temperature $\left(70^{\circ} \mathrm{C}\right)$ under a blanket of argon for 4 hours. The reaction was hotfiltered to remove any insoluble sodium salts before removing the solvent via rotary evaporation. The resulting yellow solid was washed with water and then dried under high vacuum. The crude product was recrystallized in minimal hot methanol and a yellow solid isolated ($2.63 \mathrm{~g}, 5.82 \mathrm{mmol}, 86 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 1.23\left(18 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.36\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t} B u}\right), 1.37\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 4.74(2 \mathrm{H}, \mathrm{s}, \mathrm{N}-$ $\left.\mathrm{CH}_{2}\right), 6.98(1 \mathrm{H}, \mathrm{d}(\mathrm{J}=2.3 \mathrm{~Hz}), \operatorname{Ar}-\mathrm{H}), 7.02(1 \mathrm{H}, \mathrm{d}(\mathrm{J}=2.6 \mathrm{~Hz}), \operatorname{Ar}-\mathrm{H}), 7.22(1 \mathrm{H}, \mathrm{d}(\mathrm{J}=7.2$ $\mathrm{Hz}), \mathrm{Ar}-\mathrm{H}), 7.32$ ($1 \mathrm{H}, \mathrm{d}(\mathrm{J}=2.3 \mathrm{~Hz}$), Ar-H), 8.42 ($1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{CH}$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) 29.4,29.9,31.5,31.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.2,34.3,34.8,35.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 61.3 ($\mathrm{N}-\mathrm{CH}_{2}$), 117.9, 123.8, 124.2, 126.4, 127.5, 136.0, 136.8, 140.5, 142.6, 151.0 (ArC), 157.6, 159.1 (Ar-O), 167.8 (CH=N). $\mathrm{m} / \mathrm{z}\left[\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{NO}_{2}+\mathrm{Na}\right]^{+}=474.3348$, found 474.3371.

1.6.3. Aluminium imine bis(phenolate) complexes

Imine bis(phenolate) complexation was carried out on a 0.5 g scale. Ligand $\mathrm{H}_{2}(1-5)$ was charged to a Schlenk flask and placed under an inert atmosphere using standard air-sensitive techniques. Dry toluene ($\sim 10 \mathrm{ml}$) was added to the flask via a cannula before the addition of 1 equivalent of AlMe_{3} (2 M in hexane) via syringe. The reaction was stirred at room temperature for 1 hour before the removal of solvent under reduced pressure to yield a yellow solid. Crude material was recrystallised in minimal hot toluene.
The high dilution method for the coordination of $\mathrm{H}_{2} 4$ to AlMe_{3} was carried out through the addition of appropriate amounts of AlMe_{3} to dry toluene ($\sim 10 \mathrm{ml}$) in a schlenk under an inert atmosphere before the drop-wise addition of a similar solution of ligand $\left(\mathrm{H}_{2} 4\right)$ in $\sim 10 \mathrm{ml}$ of dry toluene. Crude material was isolated by solvent removal under vacuum and recrystallisation attempted from hot toluene.

$$
\mathrm{Al}_{2}(\mathrm{Me})_{2}(1)_{1}\left(5^{\circ}-5^{\circ} \text { geometry }\right)
$$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)-0.03\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Al}-\mathrm{CH}_{3}\right), 3.53\left(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=14.0 \mathrm{~Hz}), \mathrm{CH}_{2}-\mathrm{N}\right), 5.30(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=$ $\left.14.0 \mathrm{~Hz}), \mathrm{CH}_{2}-\mathrm{N}\right), 6.64(2 \mathrm{H}$, dd $(\mathrm{J}=1.0,6.9 \mathrm{~Hz}), \mathrm{Ar}-\mathrm{H}), 6.74(2 \mathrm{H}$, dd (J=1.7, 7.7 Hz), Ar$\mathrm{H}), 6.94(2 \mathrm{H}, \mathrm{dt}(\mathrm{J}=1.6,7.5 \mathrm{~Hz}), \mathrm{Ar}-\mathrm{H}), 6.99-7.05(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.12(2 \mathrm{H}, \mathrm{dd}(\mathrm{J}=1.9$, $6.9 \mathrm{~Hz}), \mathrm{Ar}-\mathrm{H}), 7.29(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N}), 7.37(2 \mathrm{H}, \mathrm{dt}(\mathrm{J}=1.7,7.9 \mathrm{~Hz}), \operatorname{Ar}-\mathrm{H}), 8.41(2 \mathrm{H}, \mathrm{dd}(\mathrm{J}=$ $0.7,8.5 \mathrm{~Hz}$), Ar-H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)-8.10\left(\mathrm{Al}-\mathrm{CH}_{3}\right), 60.8\left(\mathrm{~N}-\mathrm{CH}_{2}\right), 117.3,119.9,121.1,122.1,122.8$, 126.3, 128.2, 129.0, 133.3, 135.4 ($\mathrm{Ar}-\mathrm{C}$), 154.4 ($\mathrm{CH}=\mathrm{N}$), 164.0, 165.2 (Ar-O).

Anal: calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{Al}: \mathrm{C}, 67.4 ; \mathrm{H}, 5.28 ; \mathrm{N}, 5.24$. Found: $\mathrm{C}, 66.7 ; \mathrm{H}, 5.27 ; \mathrm{N}, 4.72$.

$$
\underline{\mathrm{Al}}_{2}(\mathrm{Me})_{2}(2)_{2}\left(6^{\circ}-4^{\circ} \text { geometry }\right)
$$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)-0.49\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Al}-\mathrm{CH}_{3}\right), 1.66\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.13\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.43(2 \mathrm{H}$, d (J $\left.=17.3 \mathrm{~Hz}), \mathrm{CH}_{2}-\mathrm{N}\right), 5.05\left(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=17.3), \mathrm{CH}_{2}-\mathrm{N}\right), 6.48-6.96(12 \mathrm{H}, \mathrm{m}, \operatorname{Ar}-\mathrm{H}), 7.70(2 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}=\mathrm{N}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)-11.6\left(\mathrm{Al}-\mathrm{CH}_{3}\right), 14.5,19.0\left(\mathrm{CH}_{3}\right), 61.1\left(\mathrm{CH}_{2}-\mathrm{N}\right), 117.2,119.5$, 121.1, 122.0, 122.5, 127.1, 129.0, 129.2, 129.3, 135.5 ($\mathrm{Ar}-\mathrm{C}$), 151.9 ($\mathrm{CH}=\mathrm{N}$), 160.9, 167.4 (Ar-O).

$\mathrm{Al}_{2}(\mathrm{Me})_{2}(3)_{2}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)-0.39\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Al}-\mathrm{CH}_{3}\right), 0.98\left(18 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.29\left(18 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.24$ $\left(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=16.8 \mathrm{~Hz}), \mathrm{CH}_{2}-\mathrm{N}\right), 5.43\left(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=16.8 \mathrm{~Hz}), \mathrm{CH}_{2}-\mathrm{N}\right), 6.72(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=2.0 \mathrm{~Hz})$, Ar-H), 6.80-6.87 (4H, m, Ar-H), $6.94(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=2.6 \mathrm{~Hz}), \operatorname{Ar}-\mathrm{H}), 6.96(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=2.0 \mathrm{~Hz})$, Ar-H), $7.41(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=2.6 \mathrm{~Hz}), \operatorname{Ar}-\mathrm{H}), 7.76(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 0.0\left(\mathrm{Al}-\mathrm{CH}_{3}\right), 27.8,30.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 32.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)\right.$, $61.9\left(\mathrm{CH}_{2}-\mathrm{N}\right), 117.6,120.6,121.8,124.3,127.1,127.9,128.8,129.8,136.8,139.6$ ($\mathrm{Ar}-$ C), 153.2, 161.9 ($\mathrm{Ar}-\mathrm{O}$), 170.2 ($\mathrm{C}=\mathrm{N}$).

Anal: calc for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{AlNO}_{2}$: C, 72.80; $\mathrm{H}, 7.97 ; \mathrm{N}, 3.69$. Found: $\mathrm{C}, 72.68 ; \mathrm{H}, 8.12 ; \mathrm{N}$, 3.55 .

$$
\mathrm{Al}_{2}(\mathrm{Me})_{2}(4)_{2}\left(5^{\circ}-5^{\circ} \text { geometry }\right)
$$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)-0.29\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Al}-\mathrm{CH}_{3}\right), 3.38\left(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=13.5), \mathrm{N}-\mathrm{CH}_{2}\right), 5.09(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=$ $\left.13.5 \mathrm{~Hz}), \mathrm{N}-\mathrm{CH}_{2}\right), 6.27(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=2.5 \mathrm{~Hz}), \mathrm{Ar}-\mathrm{H}), 6.63(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N}), 6.79(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=7.2$
$\mathrm{Hz}), \operatorname{Ar}-\mathrm{H}), 6.92(2 \mathrm{H}, \mathrm{t}(\mathrm{J}=7.2 \mathrm{~Hz}), \operatorname{Ar}-\mathrm{H}), 7.14(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=7.2 \mathrm{~Hz}), \operatorname{Ar}-\mathrm{H}), 7.35(2 \mathrm{H}, \mathrm{t}(\mathrm{J}=$ $7.2 \mathrm{~Hz}), \mathrm{Ar}-\mathrm{H}), 8.66(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=7.2 \mathrm{~Hz}), \mathrm{Ar}-\mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 1.71\left(\mathrm{Al}-\mathrm{CH}_{3}\right), 61.0\left(\mathrm{CH}_{2}-\mathrm{N}\right), 121.0,121.6,122.1,124.2,126.1$, 127.7, 129.9, 131.2, 134.9, 138.2 ($\mathrm{Ar}-\mathrm{C}$), 154.1, 158.0 ($\mathrm{Ar}-\mathrm{O}$), $164.0(\mathrm{CH}=\mathrm{N})$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)-0.20\left(6 \mathrm{H}, \mathrm{s}, \frac{\left.\mathrm{Al}_{2}(\mathrm{Me})_{2}(5)_{2}\left(\mathrm{Al}_{2} \mathrm{CH}_{3}\right), 0.4^{\circ} \text { geometry }\right)}{0.89\left(18 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.19\left(18 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.37}\right.$ $\left(18 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.371\left(18 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.05\left(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=14.7), \mathrm{CH}_{2}-\mathrm{N}\right), 6.14(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=$ $\left.14.3), \mathrm{CH}_{2}-\mathrm{N}\right), 6.94(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=2.5 \mathrm{~Hz}), \mathrm{Ar}-\mathrm{H}), 7.24(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=2.5 \mathrm{~Hz}), \mathrm{Ar}-\mathrm{H}), 7.35(2 \mathrm{H}, \mathrm{d}$ $(\mathrm{J}=2.5 \mathrm{~Hz}), \mathrm{Ar}-\mathrm{H}), 7.45(2 \mathrm{H}, \mathrm{d}(\mathrm{J}=2.5 \mathrm{~Hz}), \mathrm{Ar}-\mathrm{H}), 7.94(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)-4.44\left(\mathrm{Al}-\mathrm{CH}_{3}\right), 29.5,31.6,31.7,31.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.9,34.5,34.6$,
 136.9, 139.9, 140.7, 144.8, 150.7, 163.1

Anal: calc. for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{NO}_{2} \mathrm{Al}: \mathrm{C}, 75.7 ; \mathrm{H}, 9.43 ; \mathrm{N}, 2.85$. Found: C, 75.2; H, 9.13; $\mathrm{N}, 2.56$.

1.7. Polymerisation Trials

1.7.1. Polymerisation Procedure

Solvent-based polymerisations were carried out in toluene at a lactide concentration of 0.8 M . The monomer/initiator/co-initiator ratio used was 100:1:1, with benzyl alcohol acting as the co-initiator. Monomer (1.0 g) was purified through recrystallisation and double sublimation. Reactions were prepared air-sensitively and sealed before being carried out at $80^{\circ} \mathrm{C}$. After the desired reaction time, the reaction was quenched with methanol (1 ml). Solvents were then removed under reduced pressure and the resulting solid analysed by ${ }^{1} \mathrm{H}$ NMR to determine conversion. Quantification was achieved through the integration of the monomer methine quartet (4.9 ppm) and the polymer methine multiplet (5.1 ppm) with conversion calculated using the following equation: $\operatorname{conv} .=\frac{[P L A]}{[L A]+[P L A]} \times 100$. The solid was washed with methanol to remove all unreacted monomer. Homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectroscopy $\left(\mathrm{CDCl}_{3}\right)$ was used to determine the polymer tacticity, with quantification as a P_{r} value (probability of racemic enchainment). GPC (THF, referenced to polystyrene standards) provided relative molecular weights (M_{n}) and polydispersity index (PDI) of the polymers produced. Theoretical molecular weight was calculated using the following equation: $M n=\left(\frac{\operatorname{conv}}{100} \times 144 \times 100\right)+108$, where 108 is the mass of the end groups $\left\{\mathrm{H} / \mathrm{OCH}_{2} \mathrm{Ph}\right\}$.

1.7.2. Homonucelar-decoupled ${ }^{1} \mathrm{H}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectroscopy

${ }^{1} \mathrm{H}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy of polymeric material was carried out using Bruker DRX400 NMR instrument. Purified material (monomer removed through MeOH wash and subsequent drying under vacuum) was dissolved in CDCl_{3} at a concentration of $10 \mathrm{mg} \mathrm{ml}^{-1}$. A standard ${ }^{1} \mathrm{H}$ NMR spectrum was acquired with note taken of the chemical shift of the pendant methyl doublet signal of the lactidyl repeat unit (~ 1.61 $\mathrm{ppm})$. The decoupled spectrum was then acquired with the secondary frequency set to that of the methyl doublet (" $\mathrm{o} 2 \mathrm{p}=1.61$ ") and the power level (" $\mathrm{pl} 24=40$ "). Number of scans used ("ns=4") whilst fine tuning of decoupling was achieved before final acquisition of a decoupled spectrum with an increased number of scans (" $\mathrm{ns}=8$ "). P_{r}
values were calculated through integration of [sis] tetrad with respect to remaining tetrads (as identified in section 1.4.3). The following equation was used to calculate

1.7.3. Kinetics-scale solvent polymerisations of rac-lactide \& l-lactide

Polymerisations were carried out in a Young's NMR tube, prepared under an inert atmosphere using standard glove-box techniques. Monomer/initiator/BnOH ratio was 100:1:1 with a monomer concentration of 0.8 M .0 .5 ml of solvent (toluene- d_{8}) was added to the monomer in the Young's NMR tube. A solution of initiator was prepared containing five times the amount required in 0.50 ml of toluene $-d_{8} .0 .10 \mathrm{ml}$ of this solution was then transferred to the NMR tube. Benzyl alcohol was added to the NMR tube using a micro-syringe. Kinetic experiments were carried out at $80^{\circ} \mathrm{C}$ in the NMR spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were obtained at regular intervals and the conversion calculated based on relative integrals of monomeric and polymeric signals for the lactide methine ($4.21 \mathrm{ppm} \rightarrow 5.15 \mathrm{ppm}$). ${ }^{[M]_{t}=[M]_{0} \times \text { conv. The }}$ pseudo first-order rate constant ($k_{\text {app }}$) was calculated from the gradient of $\ln \left(\frac{[M]_{0}}{[M]_{t}}\right)$ vs.t.
2. ${ }^{1} \mathrm{H}$ NMR Spectra

Figure S 1 Extract of the ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ for non-recrystallised $\mathrm{Al}_{2}(\mathrm{Me})_{2}(\mathbf{2})_{2}$ exhibiting signals for the 5° 5° structural geometry: A (imine), C (methylene bridge) and the predominant $6^{\circ}-4^{\circ}$ structural geometry: B (imine) and D (methylene bridge).

Figure S 2 Extracts of the ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ for the synthesis of $\mathrm{Al}_{2}(\mathrm{Me})_{2}(\mathbf{2})_{2}$ at: 1. 0.2 M ligand concentration and 2. 0.1 M ligand concentration

Figure S 3 Extracts of the ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathrm{Al}_{2}(\mathrm{Me})_{2}(4)_{2}$ synthesised by: 1 . High dilution method and 2 . Low dilution method. Showing the imine signals of the proposed major (8.95 ppm) and minor (8.32 ppm) isomers of the $5^{\circ}-5^{\circ}$ structural motif

Figure S4 Extracts of the ${ }^{1} \mathrm{H}$ NMR spectra for $\mathrm{Al}_{2}(\mathrm{Me})_{2}(\mathbf{1})_{2}$ acquired via VT-NMR spectroscopy in THF- d_{8}. Comparison of spectra shows that in a coordinative solvent (d_{8}-THF) one set of doublets, assigned to the diastereotopic CH_{2} protons of the methylene bridge, is unchanged. Cooling of the sample slows the reversible coordination of the solvent making the doublet more disernable.

3. Crystal Data and Structure Refinement

All data were collected on a Nonius kappa CCD diffractometer with MoK α radiation ($\lambda=$ $0.71073 \AA$ Å). $T=150(2) \mathrm{K}$ throughout and all structures were solved by direct methods and refined on F^{2} data using the SHELXL-97 suite of programs. Hydrogen atoms, were included in idealised positions and refined using the riding model, except those involved in H -bonding networks which were located in the final difference Fourier map. All solutions were relatively straightforward expect the following: $\mathrm{Al}_{2}(\mathrm{Me})_{2}(4)_{2}$ The asymmetric unit consists of two independent Al complexes and seven solvent molecules of toluene. All solvent molecules have been constrained to form rigid hexagons. Solvent molecules with atoms C100-C106, C200-C206 and C400-C406 have then been refined anisotropically. Solvent molecule C400-C406 shows potential disorder. However, this could not be refined satisfactory. Solvent molecules C300-C306, C500-C506 and C600-C606 show disorder in the ratio 50:50 60:40 and 55:45 respectively. These have been refined isotropically and some of the bond lengths and angles of the methyl groups have been restrained. $\mathrm{Al}_{2}(\mathrm{Me})_{2}(5)_{2}$ the methyl moieties of two tert-butyl groups (C10-C12 and C30-C32) are disordered over two positions in a $75: 25$ ratio the minor component was refined isotropically.

$\mathrm{H}_{2} 1$

$\mathrm{H}_{2} 4$

$\mathrm{H}_{2} 2$

$\mathrm{H}_{2} 5$

Figure S 5 Structures of ligands $\mathrm{H}_{2} \mathbf{1}, \mathrm{H}_{2} \mathbf{2}, \mathrm{H}_{2} \mathbf{4}$ and $\mathrm{H}_{2} \mathbf{5}$ as determined by single-crystal X-ray diffraction

	$\mathrm{H}_{2} \mathbf{1}$	$\mathrm{H}_{2} \mathbf{2}$	$\mathrm{H}_{2} \mathbf{4}$	$\mathrm{H}_{2} \mathbf{5}$
$\mathbf{N}(1)-\mathbf{C}(8)$	$1.2915(18)$	$1.2994(18)$	$1.294(2)$	-
$\mathbf{N}(1)-\mathbf{C}(7)$	$1.4710(16)$	$1.4685(18)$	$1.473(2)$	-

$\mathbf{C}(\mathbf{7})-\mathbf{N}(\mathbf{1})-\mathbf{C}(\mathbf{8})$	$125.18(12)$	$124.66(12)$	$123.46(14)$	-
$\mathbf{N}(\mathbf{1})-\mathbf{C}(\mathbf{1 6})$	-	-	-	$1.2765(17)$
$\mathbf{N}(\mathbf{1})-\mathbf{C}(\mathbf{1 5)}$	-	-	-	$1.4705(15)$
$\mathbf{C}(\mathbf{1 5})-\mathbf{N}(\mathbf{1})-\mathbf{C}(\mathbf{1 6)}$	-	-	-	$117.54(11)$

Table S1 Selected bond length (A) and bond angles (${ }^{\circ}$) for $\mathrm{H}_{2} \mathbf{1}, \mathrm{H}_{2} \mathbf{2}, \mathrm{H}_{2} \mathbf{4}$ and $\mathrm{H}_{2} \mathbf{5}$ as determined by single-crystal X-ray diffraction

Figure S 6 Solid-state structure of $\mathrm{Al}_{2}(\mathrm{Me})_{2}(\mathbf{2})_{2}$ as determined by single-crystal X-ray diffraction. Ellipsoids are shown at the 30% probability level. All disorder and hydrogen atoms have been removed for clarity

Figure S7 Solid-state structure of $\mathrm{Al}_{2}(\mathrm{Me})_{2}(5)_{2}$ as determined by single-crystal X-ray diffraction. Ellipsoids are shown at the 30% probability level. All disorder and hydrogen atoms have been removed for clarity

Figure $\mathrm{S8}$ Solid-state structure of $\mathrm{Al}_{2}(\mathrm{Me})_{2}(4)_{2}$ as determined by single-crystal X-ray diffraction. Ellipsoids are shown at the 30% probability level. All disorder and hydrogen atoms have been removed for clarity

	$\mathrm{Al}_{2}(\mathrm{Me})_{2}(\mathbf{2})_{2}$	$\mathrm{Al}_{2}(\mathrm{Me})_{2}(\mathbf{5})_{2}$
$\mathrm{Al}(1)-\mathrm{O}(1)$	$1.8226(10)$	$1.842(2)$
$\mathrm{Al}(1)-\mathrm{O}(3)$	$1.8387(10)$	$1.843(2)$
$\mathrm{Al}(1)-\mathrm{C}(1)$	$1.9560(19)$	$1.964(4)$

$\mathrm{Al}(1)-\mathrm{C}(2)$	$1.9560(19)$	$1.964(4)$
$\mathrm{Al}(2)-\mathrm{O}(1)$	$1.9858(10)$	$1.973(2)$
$\mathrm{Al}(2)-\mathrm{O}(3)$	$1.9480(10)$	$2.029(2)$
$\mathrm{Al}(2)-\mathrm{O}(2)$	$1.8101(100$	$1.817(2)$
$\mathrm{Al}(2)-\mathrm{O}(4)$	$1.8011(9)$	$1.820(2)$
$\mathrm{Al}(2)-\mathrm{N}(1)$	$2.0427(12)$	$2.008(3)$
$\mathrm{Al}(2)-\mathrm{N}(2)$	$2.0043(11)$	$2.007(3)$
$\mathrm{Al}(1)-\mathrm{O}(1)-\mathrm{Al}(2)$	$101.91(5)$	$103.74(10)$
$\mathrm{Al}(1)-\mathrm{O}(3)-\mathrm{Al}(2)$	$102.77(5)$	$101.54(10)$
$\mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{C}(2)$	$118.40(10)$	$109.73(19)$
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(3)$	$80.81(4)$	$81.16(10)$
$\mathrm{O}(1)-\mathrm{Al}(2)-\mathrm{O}(3)$	$74.21(4)$	$73.55(9)$
$\mathrm{O}(2)-\mathrm{Al}(2)-\mathrm{O}(4)$	$101.97(4)$	$101.64(10)$
$\mathrm{O}(2)-\mathrm{Al}(2)-\mathrm{N}(2)$	$90.05(4)$	$88.34(10)$
$\mathrm{O}(2)-\mathrm{Al}(2)-\mathrm{O}(3)$	$93.55(4)$	$92.93(10)$
$\mathrm{O}(1)-\mathrm{Al}(2)-\mathrm{O}(4)$	$90.55(4)$	$92.14(10)$
$\mathrm{N}(1)-\mathrm{Al}(2)-\mathrm{N}(2)$	$178.00(5)$	$177.74(11)$

Table S2 Selected bond lengths (A) and bond angles $\left({ }^{\circ}\right)$ for $\mathrm{Al}_{2}(\mathrm{Me})_{2}(\mathbf{2})_{2}$ and $\mathrm{Al}_{2}(\mathrm{Me})_{2}(\mathbf{5})_{2}$ as determined by single-crystal X-ray diffraction

	$\mathrm{Al}_{2}(\mathrm{Me})_{2}(4)_{2}$
$\mathrm{Al}(1)-\mathrm{O}(1)$	$1.784(4)$
$\mathrm{Al}(1)-\mathrm{O}(2)$	$1.855(5)$
$\mathrm{Al}(1)-\mathrm{O}(4)$	$1.948(5)$
$\mathrm{Al}(1)-\mathrm{N}(1)$	$2.006(6)$
$\mathrm{Al}(1)-\mathrm{C}(1)$	$1.977(7)$
$\mathrm{Al}(2)-\mathrm{O}(2)$	$1.974(5)$
$\mathrm{Al}(2)-\mathrm{O}(3)$	$1.777(4)$
$\mathrm{Al}(2)-\mathrm{O}(4)$	$1.855(5)$
$\mathrm{Al}(2)-\mathrm{N}(2)$	$1.988(6)$
$\mathrm{Al}(2)-\mathrm{C}(2)$	$1.953(7)$
$\mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{O}(1)$	$120.3(3)$
$\mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{O}(2)$	$123.6(3)$
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(2)$	$116.0(2)$
$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{O}(1)$	$89.9(2)$
$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{O}(4)$	$164.3(2)$
$\mathrm{C}(2)-\mathrm{Al}(2)-\mathrm{O}(3)$	$123.2(3)$
$\mathrm{C}(2)-\mathrm{Al}(2)-\mathrm{O}(4)$	$120.6(3)$
$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{O}(4)$	$115.8(2)$
$\mathrm{N}(2)-\mathrm{Al}(2)-\mathrm{O}(3)$	$90.2(2)$
$\mathrm{N}(2)-\mathrm{Al}(2)-\mathrm{O}(2)$	$164.6(2)$

$$
\begin{array}{ll}
\hline \mathrm{Al}(1)-\mathrm{O}(2)-\mathrm{Al}(2) & 102.9(2) \\
\hline
\end{array}
$$

Table S3 Selected bond lengths (A) and bond angles $\left({ }^{\circ}\right)$ for $\mathrm{Al}_{2}(\mathrm{Me})_{2}(4)_{2}$ as determined by single-crystal X-ray diffraction

$\mathrm{H}_{2} \underline{1}$

Identification code	k10mdj26
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N} \mathrm{O}_{2}$
Formula weight	227.25
Temperature	150(2) K
Wavelength	0.71073 £
Crystal system, space group	Monoclinic, C2/c
$\text { Unit cell dimensions } \begin{aligned} a & =22.38 \\ & b=5.781 \\ & c=17.84 \end{aligned}$	$\begin{aligned} & 830(16) \AA \text { alpha }=90^{\circ} . \\ & 10(5) \text { A beta }=99.915(4)^{\circ} . \\ & 440(16) \AA \text { gamma }=90^{\circ} . \end{aligned}$
Volume	2274.5 (3) \AA^{3}
Z, Calculated density	8, $1.327 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.089 \mathrm{~mm}^{-1}$
F(000)	960
Crystal size	$0.1 \times 0.2 \times 0.2 \mathrm{~mm}$
Theta range for data collection	3.64° to 25.03°.
Limiting indices	$-26 \leq h \leq 26,-6 \leq k \leq 6,-21 \leq 1 \leq 20$
Reflections collected / unique	$11736 / 2008$ [R(int) $=0.0478]$
Completeness to theta $=25.03$	99.8 \%
Absorption correction	None
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2008 / 0 / 166
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.064
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0372, \mathrm{wR} 2=0.0855$
R indices (all data)	$\mathrm{R} 1=0.0470, \mathrm{wR} 2=0.0923$
Largest diff. peak and hole	0.129 and -0.237 e. \AA^{-3}

$\underline{H}_{2} \underline{2}$

Identification code	k11mdj02
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N} \mathrm{O}_{2}$
Formula weight	255.31
Temperature	150(2) K
Wavelength	$0.71073 \AA$
Crystal system, space group	monoclinic, $P 2{ }_{1} / \mathrm{a}$
Unit cell dimensions $a=9.5050(2) ~ \AA a l p h a=90^{\circ}$.	
$\mathrm{B}=11.25$	0 (2) A beta $=109.0580(10)^{\circ}$.
$\mathrm{C}=13.5$	(3) \AA gamma $=90^{\circ}$.
Volume	1368.76(5) A ${ }^{3}$
Z, Calculated density	4, 1.239 Mg/m ${ }^{3}$
Absorption coefficient	$0.082 \mathrm{~mm}^{-1}$
F(000)	544
Crystal size	$0.20 \times 0.15 \times 0.10 \mathrm{~mm}$
Theta range for data collection	3.62 to 27.49°.
Limiting indices$-12 \leq h \leq 12,-14 \leq k \leq 14, \quad-17 \leq 1 \leq 17$	
Reflections collected / unique	$25556 / 3133$ [R(int) $=0.0666]$
Completeness to theta $=27.49$	99.6 \%
Absorption correction	multi-scan
Max. and min. transmission	0.9919 and 0.9839
Refinement method	ull-matrix least-squares on F^{2}
Data / restraints / parameters	3133 / 0 / 182
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.050
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0458, \mathrm{wR} 2=0.1046$
R indices (all data)	$\mathrm{R} 1=0.0696, \mathrm{wR} 2=0.1182$
Largest diff. peak and hole	0.167 and -0.221 e. \AA^{-3}

$\underline{H}_{2} \underline{4}$

$\mathrm{H}_{2} 5$

Identification code	k13mdj01
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~N} \mathrm{O}_{2}$
Formula weight	451.67
Temperature	150(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, $\quad P 2_{1} / \mathrm{C}$
Unit cell dimensions $\mathrm{a}=9.96000(10) \AA$ alpha $=90^{\circ}$	
$\mathrm{b}=24.2$	(3) \AA ¢ beta $=104.9810(10)^{\circ}$
$\mathrm{c}=12.2$	(2) \AA gamma $=90^{\circ}$
Volume	$2855.64(7) \mathrm{A}^{3}$
Z, Calculated density	4, $1.051 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.064 \mathrm{~mm}^{-1}$
F(000)	992
Crystal size	$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$
Theta range for data collection	3.55 to 27.49°.
Limiting indices$-12 \leq h \leq 12, \quad-31 \leq k \leq 31,-15 \leq 1 \leq 15$	
Reflections collected / unique	$38743 / 6517$ [R(int) $=0.0509]$
Completeness to theta $=27.49$	99.7 \%
Max. and min. transmission	0.9873 and 0.9810
Refinement method	ull-matrix least-squares on F^{2}
Data / restraints / parameters	6517 / 0 / 318
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.033
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0500, \mathrm{wR} 2=0.1286$
R indices (all data)	$\mathrm{R} 1=0.0651, \mathrm{wR} 2=0.1392$
Largest diff. peak and hole	0.622 and -0.282 e. A^{-3}

$\mathrm{Al}_{2}(\mathrm{Me})_{2}(2)_{2}$

Identification code	k11mdj01
Empirical formula	$\begin{array}{lllllll}\mathrm{C}_{34} & \mathrm{H}_{36} & \mathrm{Al}_{2} & \mathrm{~N}_{2} & \mathrm{O}_{4}\end{array}$
Formula weight	590.6
Temperature	150 (2) K
Wavelength	$0.71073 \AA$
Crystal system, space group	Monoclinic, $P 2{ }_{1} / C$
Unit cell dimensions a =	. $55200(10) \AA$ alpha ${ }^{\text {a }}$ (90°.
	. $36600(10) \AA$ beta $=97.83^{\circ}$.
	.1490 (2) \AA (gamma $=90^{\circ}$.
Volume	$3134.55(5) \AA^{3}$
Z, Calculated density	4, $1.252 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.133 \mathrm{~mm}^{-1}$
F (000)	1248
Crystal size	$0.50 \times 0.50 \times 0.40 \mathrm{~mm}$
Theta range for data collection	3.56 to 27.49°.
Limiting indices	
Reflections collected / unique	60619 / 7141 [R(int) $=0.0474]$
Completeness to theta $=27.49$	99.6%
Absorption correction	mult-scan
Max. and min. transmission	0.9488 and 0.9366
Refinement method	ull-matrix least-squares on F^{2}
Data / restraints / parameters	7141 / 0 / 385
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	0.997
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0375, \mathrm{wR} 2=0.1011$
R indices (all data)	$\mathrm{R} 1=0.0475, \mathrm{wR} 2=0.1101$
Largest diff. peak and hole	0.291 and -0.286 e. \AA^{-3}

$\mathrm{Al}_{2}(\mathrm{Me})_{2}(4)_{2}$

Identification code	h10mdj 30
Empirical formula	
Formula weight	1896.34
Temperature	150(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, Pbn21
Unit cell dimensions	$a=12.0601(2) \AA \quad$ alpha $=90^{\circ}$.
	$\mathrm{b}=22.5938(3) \AA$ ¢ beta $=90^{\circ}$.
	$\mathrm{c}=35.5013(6) \AA$ gamma $=90^{\circ}$.
Volume	9673.5 (3) \AA^{3}
Z, Calculated density	4, 1.302 Mg/m ${ }^{3}$
Absorption coefficient	$0.327 \mathrm{~mm}^{-1}$
F(000)	3948
Crystal size	$0.10 \times 0.10 \times 0.10 \mathrm{~mm}$
Theta range for data collecti	n 3.54 to 25.02°.
Limiting indices	$-14 \leq h \leq 14,-26 \leq k \leq 26,-42 \leq 1 \leq 42$
Reflections collected / uniqu	77915 / 16713 [R(int) $=0.0963]$
Completeness to theta $=25.02$	99.1 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9680 and 0.9680
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameter	16713 / 8 / 906
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.029
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0836, \mathrm{wR} 2=0.1978$
R indices (all data)	$\mathrm{R} 1=0.1232, \mathrm{wR} 2=0.2241$
Absolute structure parameter	0.24 (8)
Largest diff. peak and hole	0.762 and -0.392 e. \AA^{-3}

$\mathrm{Al}_{2}(\mathrm{Me})_{2}(5)_{2}$

4. References

1. B. M. Chamberlain, M. Cheng, D. R. Moore, T. M. Ovitt, E. B. Lobkovsky and G. W. Coates, Journal of the American Chemical Society, 2001, 123, 3229-3238.
2. I. Zagol-Ikapitte, V. Amarnath, M. Bala, L. J. Roberts, J. A. Oates and O. Boutaud, Chem. Res. Toxicol., 2010, 23, 240-250.
3. P. D. Knight, P. N. O'Shaughnessy, I. J. Munslow, B. S. Kimberley and P. Scott, J. Organomet. Chem., 2003, 683, 103-113.
