Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supplementary Information

BaTiO₃/graphene nanocomposites: Synthesis and Visible Light Photocatalytic Activity

Rui-Xia Wang ^{a,b}, Qing Zhu ^a, Wan-Sheng Wang ^a, Chong-Min Fan ^a, An-Wu Xu^{*a}

^aDivision of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.

^bDepartment of Materials and Chemical Engineering ,College of Chi Zhou, Chizhou, 247000, P.R. China

Correspondence author: E-mail: anwuxu@ustc.edu.cn (A. W. Xu)

Sample	Ba(NO ₃) ₂ (g)	NaOH (g)	Graphene oxide (g)	P25 (g)	solvothermal time (h)	solvothermal temperature (°C)
BaTiO ₃ / 0wt% graphene	0.4940	19.20	0.00	0.1190	24	200
BaTiO ₃ / 2wt% graphene	0.4940	19.20	0.016	0.1190	24	200
BaTiO ₃ / 5wt% graphene	0.4940	19.20	0.04g	0.1190	24	200
BaTiO ₃ / 8wt% graphene	0.4940	19.20	0.064	0.1190	24	200

Table S1. Samples and Corresponding Experimental Conditions.

Fig. S1 Photographs of the samples of $blank-BaTiO_3$ and $BaTiO_3/graphene$ nanocomposites with different nominal weight addition ratios of graphene.

Fig. S2 TGA curves of BaTiO₃/2 wt% graphene, BaTiO₃/5 wt% graphene, BaTiO₃/8 wt% graphene in air atmosphere.

Fig. S2 shows the thermogravimetric analysis (TGA) of $BaTiO_3/2$ wt% graphene, $BaTiO_3/5$ wt% graphene, $BaTiO_3/8$ wt% graphene in air atmosphere. The TGA curves of $BaTiO_3/graphene$ samples show gradual mass loss till 150 °C due to the removal of water in the sample. The weight loss of $BaTiO_3/graphene$ in the temperature range 400-500 °C is attributed to the oxidation of carbon from the $BaTiO_3/graphene$. Above

525 °C all graphene is completely burned to CO_2 and only residual BaTiO₃ is left within the samples. Based on above analysis, the actual graphene contents are 1.18%, 1.70% and 2.91% for BaTiO₃/2 wt% graphene, BaTiO₃/5 wt% graphene and BaTiO₃/8 wt% graphene, respectively. It is worth noting that sample BaTiO₃/8 wt% graphene shows the lowest water content due to the hydrophobic nature of graphene. Moreover, sample BaTiO₃/5 wt% graphene shows the highest water content, which is beneficial for dye molecule adsorption in aqueous solution, and thus displays the highest photocatalytic activity among three samples.

Fig. S3 Curves of the Kubelka–Munk function plotted against the photon energy for the BaTiO₃/5 wt% graphene.

Fig. S4 Photocatalytic degradation of MB by $BaTiO_3/5\%$ graphene nanocomposite at

different time.

Fig. S5 The cycling degradation efficiency for MB of $BaTiO_3/5\%$ graphene nanocomposites under visible-light irradiation.

Fig. S6 XRD pattern of $BaTiO_3/5\%$ graphene nanocomposites after photocatalytic degradation of MB.

Fig. S7 Visible light photocatalytic degradation of MB over pure SrTiO₃, SrTiO₃/5 wt% graphene nanocomposites, and no photocatalyst.