Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Microwave promoted C-O coupling for synthesizing *O*aryloxytriazole nucleoside analogues

Mei Cong^{*a*}, Yi Xia^{*a*, *b*, *c*}, Jingjie Tang^{*a*}, Laurence Borge^{*d*}, Gilles Quéléver^{*a*}, Juan L. Iovanna^{*d*},

Palma Rocchi ^{d, e, f}, Ling Peng ^{a*}

^a Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Marseille,

France.

Fax: (00 33) 4 91 82 93 01

E-mail: ling.peng@univ-amu.fr

^b The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, 2660 Oak

street, Vancouver, BC V6H 3Z6, Canada.

^c Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China

^d Centre de Recherche en Cancérologie de Marseille, INSERM, UMR 1068, Marseille, France.

^e Institut Paoli-Calmettes, Marseille, France.

^f Aix-Marseille Université, CNRS, UMR 7258, Marseille, France.

Table of Contents

Table S1	S2
General	S3
Representative Procedure A for preparing 2a-2n	S3
Representative Procedure B for preparing 4a-4n	S3
¹ H NMR and ¹³ C NMR spectra.	S13

Table S1. Optimization of the reagent ratio.^a

AcO	Br N H N-N O 1	СН ₃ + НО-∕F а	Cs ₂ CO ₃ CH ₃ CN, 110 MW	F °C Ac0 2a	
	entry	phenol (a)	Cs ₂ CO ₃	yield %	
	1	1.0 eq	1.0 eq	58	
	2	2.0 eq	1.0 eq	72	
	3	3.0 eq	1.0 eq	78	
	4	3.0 eq	1.5 eq	3	
	5	3.0 eq	2.0 eq	4	
	6	3.0 eq	0.5 eq	58	

^a compound 1 (0.10 mmol), solvent (0.75 mL), MW, 110 °C, calculated yield with ¹H NMR.

General: Chemicals were purchased from Sigma Aldrich or Alfa Aesar were used directly without purification. The adducts were purified by flash chromatography on silica gel (Merck 200-300 mesh). ¹H NMR spectra were recorded at 250 or 400 MHz and ¹³C NMR spectra recorded at 62.5 or 100 MHz, on Bruker Avance II 250, Bruker Avance III 400 spectrometers, JEOL 400 spectrometers, respectively. The chemical shifts (δ) are expressed in parts per million (ppm) with the residual peak of CHCl₃ at 7.26 ppm. The high-resolution mass spectra (HRMS) were obtained with an MALDI/DHB or ESI-Positive mode on IonSpec 4.7 TESLA FTMS or Bruker Daltonics, Inc. APEXIII 7.0 TESLA FTMS. Thin Layer Chromatography (TLC) was performed on TLC plates silica gel 60 F254, layer thickness 0.2 mm, Merck KGaA. The compound revelations were revealed by using UV light (254 nm).

General procedure A for synthesizing 2a-2n. Compound **1** (0.10 mmol), Cs₂CO₃ (0.10 mmol) were mixed in CH₃CN (0.75 mL) in an oven-dried 10 mL MW tube with a stirring bar under 110 °C for 30 min. Reactions were monitored by TLC. The reaction mixture was concentrated under reduced pressure and the crude residue purified by flash chromatography on silica gel using the mixture dichloromethane and menthol as eluent. The purified material was dried in vacuum to afford the corresponding product **2a-2n**.

General procedure B for synthesizing 4a-4n. Compound 3 (0.10 mmol), Cs_2CO_3 (0.10 mmol) were mixed in CH₃CN (0.75 mL) in an oven-dried 10 mL MW tube with a stirring bar under 110 °C for 30 min. Reactions were monitored by TLC. The reaction mixture was concentrated under reduced pressure and the crude residue purified by flash chromatography on silica gel using the mixture dichloromethane and menthol as eluent. The purified material was dried in vacuum to afford the corresponding product 4a-4n.

2a: The desired product was obtained starting from compound **1** and 4-fluorophenol with a 78 % yield (27.6 mg) as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.30 (m, 2H, phenyl-H), 7.09 (t, 2H, *J* = 8.6 Hz, phenyl-H), 5.57 (s, 2H, -O*CH*₂N-), 4.21 (t, 2H, *J* = 4.6 Hz, -OCH₂CH₂OAc), 3.94 (s, 3H, -C(O)O*CH*₃), 3.89 (t, 2H, *J* = 4.4 Hz, -O*CH*₂CH₂OAc), 2.03 (s, 3H, -C(O)*CH*₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.6, 160.2 (*J*_{CF} = 243.6 Hz), 159.7, 158.1, 150.8, 149.0 (*J*_{CF} = 2.8 Hz), 121.0 (*J*_{CF} = 8.5 Hz), 116.5 (*J*_{CF} = 23.6 Hz), 76.2, 68.0, 62.8, 52.8, 20.7. R_f = 0.34 (cyclohexane/ethyl acetate = 1:1). HRMS: calcd. for C₁₅H₁₇FN₃O₆⁺, 354.1096, found 354.1093.

2b: The desired product was obtained starting from compound **1** and 3-fluorophenol with a 74 % yield (26.1 mg) as c white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.41-7.32 (m, 1H, phenyl-H), 7.17-7.04 (m, 2H, phenyl-H), 7.00-6.93 (m, 1H, phenyl-H), 5.56 (s, 2H, -OCH₂N-), 4.20 (t, 2H, J = 4.6 Hz, -OCH₂CH₂OAc), 3.95 (s, 3H, -C(O)CH₃), 3.87 (t, 2H, J = 4.6 Hz, -OCH₂CH₂OAc), 2.02 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.6, 163.0 ($J_{CF} = 247.1$ Hz), 159.7, 157.4, 153.8 ($J_{CF} = 10.9$ Hz), 150.9, 130.7 ($J_{CF} = 9.4$ Hz), 115.0 ($J_{CF} = 3.4$ Hz), 113.1 ($J_{CF} = 21.0$ Hz), 107.5 ($J_{CF} = 25.5$ Hz), 76.3, 68.1, 62.7, 52.8, 20.7. R_f = 0.34 (cyclohexane/ethyl acetate = 1:1). HRMS: calcd. for C₁₅H₁₇FN₃O₆⁺, 354.1096, found 354.1100.

2c: The desired product was obtained starting from compound **1** and 2-fluorophenol with a 50 % yield (17.6 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.50-7.43 (m, 1H, phenyl-H), 7.28-7.15 (m, 3H, phenyl-H), 5.61 (s, 2H, -OCH₂N-), 4.24 (t, 2H, J = 4.6 Hz, -OCH₂CH₂OAc), 3.95 (s, 3H, -C(O)OCH₃), 3.90 (t, 2H, J = 4.6 Hz, -OCH₂CH₂OAc), 2.06 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 159.7, 158.0, 153.4 ($J_{CF} = 248.6$ Hz), 150.9, 140.5 ($J_{CF} = 12.0$ Hz), 127.6 ($J_{CF} = 7.1$ Hz), 124.9 ($J_{CF} = 3.9$ Hz), 122.4, 117.3 ($J_{CF} = 17.8$ Hz), 76.3, 68.0, 62.8, 52.8, 20.7. R_f = 0.31 (cyclohexane/ethyl acetate = 1:1). HRMS: calcd. for C₁₅H₁₇FN₃O₆⁺, 354.1096, found 354.1096.

2d: The desired product was obtained starting from compound 1 and 4-(trifluoromethyl)phenol with a 62 % yield (24.9 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.69 (d, 2H, J = 9.0 Hz, phenyl-H), 7.51 (d, 2H, J = 9.0 Hz, phenyl-H), 5.59 (s, 2H, -OCH₂N-), 4.22 (t, 2H, J = 4.6 Hz, -OCH₂CH₂OAc), 3.97 (s, 3H, - C(O)O*CH*₃), 3.90 (t, 2H, J = 4.6 Hz, -O*CH*₂CH₂OAc), 2.03 (s, 3H, -C(O)*CH*₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 159.7, 157.2, 155.4, 150.9, 128.4 ($J_{CF} = 32.8$ Hz), 127.4 ($J_{CF} = 3.8$ Hz), 123.6 ($J_{CF} = 270.1$ Hz), 119.7, 76.4, 68.2, 62.7, 52.9, 20.7. R_f = 0.35 (cyclohexane/ethyl acetate = 1:1). HRMS: calcd. for C₁₆H₁₇F₃N₃O₆⁺, 404.1064, found 404.1068.

2e: The desired product was obtained starting from compound **1** and 3-(trifluoromethyl)phenol with a 80 % yield (32.1 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.62-7.52 (m, 4H, phenyl-H), 5.57 (s, 2H, -OCH₂N-), 4.20 (t, 2H, J = 4.5 Hz, -OCH₂CH₂OAc), 3.94 (s, 3H, -C(O)OCH₃), 3.88 (t, 2H, J = 4.6 Hz, -OCH₂CH₂OAc), 2.01 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.6, 159.6, 157.4, 153.1, 150.8, 132.4 ($J_{CF} =$ 33.0 Hz), 130.6, 123.2 ($J_{CF} =$ 270.8 Hz), 122.9 ($J_{CF} =$ 3.9 Hz), 116.7 ($J_{CF} =$ 3.9 Hz), 76.3, 68.1, 62.7, 52.8, 20.6. R_f = 0.38 (cyclohexane/ethyl acetate = 1:1). HRMS: calcd. for C₁₆H₁₇F₃N₃O₆⁺, 404.1064, found 404.1064.

2f: The desired product was obtained starting from compound **1** and 2-(trifluoromethyl)phenol with a 35 % yield (14.1 mg) as white solid. ¹H NMR (400MHz, CDCl₃): δ 7.73-7.64 (m, 3H, phenyl-H), 7.39 (t, 1H, *J* = 7.6 Hz, phenyl-H), 5.60 (s, 2H, -OCH₂N-), 4.22 (t, 2H, *J* = 4.6 Hz, -OCH₂CH₂OAc), 3.96 (s, 3H, -C(O)OCH₃), 3.88 (t, 2H, *J* = 4.6 Hz, -OCH₂CH₂OAc), 2.05 (s, 3H, -C(O)CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 159.7, 157.3, 150.8, 150.1, 133.9, 127.3 (*J*_{CF} = 7.3 Hz), 126.2, 122.8 (*J*_{CF} = 271.2 Hz), 121.7 (*J*_{CF} = 31.8 Hz), 76.3, 68.0, 62.8, 52.9, 20.7. R_f = 0.34 (cyclohexane/ethyl acetate = 1:1). HRMS: calcd. for C₁₆H₁₇F₃N₃O₆⁺, 404.1064, found 404.1068.

2g: The desired product was obtained starting from compound **1** and 4-chlorophenol with a 61 % yield (22.5 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.40-7.29 (m, 4H, phenyl-H), 5.57 (s, 2H, -O*CH*₂N-), 4.22 (t, 2H, *J* = 4.6 Hz, -O*C*H₂C*H*₂OAc), 3.96 (s, 3H, -C(O)O*CH*₃), 3.89 (t, 2H, *J* = 4.6 Hz, -O*CH*₂CH₂OAc), 2.03 (s, 3H, -C(O)*CH*₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 159.7, 157.7, 151.6, 150.9, 131.5, 130.0, 120.8, 76.3, 68.1, 62.8, 52.9, 20.8. R_f = 0.33 (cyclohexane/ethyl acetate = 1:1). HRMS: calcd. for C₁₅H₁₆ClN₃NaO₆⁺, 392.0620, found 392.0620.

2h: The desired product was obtained starting from compound **1** and phenol with a 44 % yield (14.7 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.43-7.20 (m, 5H, - phenyl-H), 5.56 (s, 2H, -O*CH*₂N-), 4.20 (t, 2H, *J* = 4.6 Hz, -O*CH*₂C*H*₂OAc), 3.93 (s, 3H, -C(O)O*CH*₃), 3.87 (t, 2H, *J* = 4.8 Hz, -O*CH*₂CH₂OAc), 2.02 (s, 3H, -C(O)*CH*₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.8, 159.9, 158.1, 153.3, 150.9, 130.0, 126.1, 119.3, 76.2, 68.0, 62.8, 52.8, 20.8. R_f = 0.33 (cyclohexane/ethyl acetate = 1:1). HRMS: calcd. for C₁₅H₁₈N₃O₆⁺, 336.1190, found 336.1196.

2i: The desired product was obtained starting from compound **1** and 4-methylphenol with a 34 % yield (11.9 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.20 (s, 4H, phenyl-H), 5.56 (s, 2H, -OCH₂N-), 4.22 (t, 2H, J = 4.6 Hz, -OCH₂CH₂OAc), 3.94 (s, 3H, -C(O)OCH₃), 3.89 (t, 2H, J = 4.8 Hz, -OCH₂CH₂OAc), 2.35 (s, 3H, -PhCH₃), 2.04 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 159.9, 158.4, 151.2, 135.8, 130.3, 119.2, 76.2, 68.0, 62.8, 52.8, 20.8. R_f = 0.38 (cyclohexane/ethyl acetate = 1:1). HRMS: calcd. for C₁₆H₂₀N₃O₆⁺, 350.1347, found 350.1348.

2j: The desired product was obtained starting from compound **1** and 3-methylphenol with a 37 % yield (12.9 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.31-7.24 (m, 1H, phenyl-H), 7.13-7.04 (m, 3H, phenyl-H), 5.56 (s, 2H, -OCH₂N-), 4.22 (t, 2H, J = 4.6 Hz, -OCH₂CH₂OAc), 3.95 (s, 3H, -C(O)OCH₃), 3.88 (t, 2H, J = 4.8 Hz, -OCH₂CH₂OAc), 2.37 (s, 3H, -PhCH₃), 2.04 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 159.9, 158.2, 153.3, 150.9, 140.3, 129.6, 126.9, 119.8, 116.3, 76.2, 68.0, 62.8, 52.8, 21.3, 20.8. R_f = 0.38 (cyclohexane/ethyl acetate = 1:1). HRMS: calcd. for C₁₆H₂₀N₃O₆⁺, 350.1347, found 350.1349.

2k: The desired product was obtained starting from compound **1** and 2-methylphenol with a 32 % yield (11.2 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.30-7.13 (m, 4H, phenyl-H), 5.59 (s, 2H, -O*CH*₂N-), 4.23 (t, 2H, *J* = 4.6 Hz, -O*C*H₂C*H*₂OAc), 3.94 (s, 3H, -C(O)O*CH*₃), 3.90 (t, 2H, *J* = 4.6 Hz, -O*CH*₂CH₂OAc), 2.26 (s, 3H, -Ph*CH*₃), 2.04 (s, 3H, -C(O)*CH*₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 159.9, 158.3, 151.7, 151.0, 131.7, 129.0, 127.5, 126.4, 119.9, 76.2, 67.9, 62.9, 52.8, 20.8, 16.0. R_f = 0.35 (cyclohexane/ethyl acetate = 1:1). HRMS: calcd. for C₁₆H₂₀N₃O₆⁺, 350.1347, found 350.1346.

21: The desired product was obtained starting from compound **1** and 4-*n*-pentylphenol with a 44 % yield (17.8 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.25-7.17 (m, 4H, phenyl-H), 5.56 (s, 2H, -OCH₂N-), 4.22 (t, 2H, J = 4.5 Hz, -OCH₂CH₂OAc), 3.95 (s, 3H, -C(O)OCH₃), 3.89 (t, 2H, J = 4.6 Hz, -OCH₂CH₂OAc), 2.60 (t, 2H, J = 7.6 Hz, -CH₂(CH₂)₃CH₃), 2.04 (s, 3H, -C(O)CH₃), 1.66-1.57 (m, 2H, -CH₂CH₂(CH₂)₂CH₃), 1.34-1.30 (m, 4H, -CH₂CH₂(CH₂)₂CH₃), 0.92-0.87 (m, 3H, -CH₂CH₂(CH₂)₂CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 159.9, 158.3, 151.3, 150.9, 140.9, 129.7, 119.1, 76.2, 68.0, 62.8, 52.8, 35.2, 31.2, 31.1, 26.9, 22.5, 20.8, 14.0. R_f = 0.44 (cyclohexane/ethyl acetate = 1:1). HRMS: calcd. for C₂₀H₂₈N₃O₆⁺, 406.1973, found 406.1975.

2m: The desired product was obtained starting from compound **1** and 4-*n*-heptylphenol with a 47 % yield (20.3 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.25-7.17 (m, 4H, phenyl-H), 5.56 (s, 2H, -O*CH*₂N-), 4.22 (t, 2H, *J* = 4.6 Hz, -OCH₂C*H*₂OAc), 3.95 (s, 3H, -C(O)O*CH*₃), 3.89 (t, 2H, *J* = 4.6 Hz, -O*CH*₂CH₂OAc), 2.59 (t, 2H, *J* = 7.6 Hz, -*CH*₂(CH₂)₅CH₃), 2.04 (s, 3H, -C(O)*CH*₃), 1.31-1.25 (m, 10H, -CH₂(*CH*₂)₅CH₃), 0.91-0.85 (m, 3H, -CH₂(CH₂)₅*CH*₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.8, 159.9, 158.3, 151.3, 150.9, 140.9, 129.8, 129.7, 119.1, 76.2, 68.0, 62.9, 52.8, 35.3, 31.8, 31.4, 29.2, 29.1, 22.6, 20.8, 14.1. R_f = 0.50 (cyclohexane/ethyl acetate = 1:1). HRMS: calcd. for C₂₂H₃₂N₃O₆⁺, 434.2286, found 434.2291.

2n: The desired product was obtained starting from compound **1** and 4methoxyphenol with a 40 % yield (14.6 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.27-7.22 (m, 2H, phenyl-H), 6.92-6.89 (m, 2H, phenyl-H), 5.56 (s, 2H, -OCH₂N-), 4.22 (t, 2H, *J* = 4.6 Hz, -OCH₂CH₂OAc), 3.94 (s, 3H, -C(O)OCH₃), 3.89 (t, 2H, *J* = 4.6 Hz, -OCH₂CH₂OAc), 3.81 (s, 3H, -OCH₃); 2.04 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.8, 159.9, 158.7, 157.5, 150.9, 146.9, 120.6, 114.9, 76.2, 68.0, 62.9, 55.7, 52.8, 20.8. R_f = 0.26 (cyclohexane/ethyl acetate = 1:1). HRMS: calcd. for C₁₆H₂₀FN₃O₇⁺, 366.1296, found 366.1298.

4a: The desired product was obtained starting from compound **3** and 4-fluorophenol with a 86 % yield (29.0 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.35-7.29 (m, 2H, phenyl-H), 7.14-7.07 (m, 2H, phenyl-H), 6.78 (s, 1H, -C(O)NH₂), 5.86 (s, 1H,

-C(O)NH₂), 5.56 (s, 2H, -OCH₂N-), 4.23 (t, 2H, J = 4.6 Hz, -OCH₂CH₂OAc), 3.91 (t, 2H, J = 4.8 Hz, -OCH₂CH₂OAc), 2.05 (s, 3H, -C(O)CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 160.5, 160.2 ($J_{CF} = 244.3$ Hz), 157.8, 152.4, 149.0, 121.2 ($J_{CF} = 8.5$ Hz), 116.5 ($J_{CF} = 23.6$ Hz), 76.1, 68.1, 62.8, 20.8. R_f = 0.49 (dichloromethane/methanol = 10:1). HRMS: calcd. for C₁₄H₁₅FN₄NaO₅⁺, 361.0919, found 361.0909.

4b: The desired product was obtained starting from compound **3** and 3-fluorophenol with a 88 % yield (29.7 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.44-7.35 (m, 1H, phenyl-H), 7.17-7.11 (m, 2H, phenyl-H), 7.04-6.96 (m, 1H, phenyl-H), 6.81 (s, 1H, -C(O)*NH*₂), 6.07 (s, 1H, -C(O)*NH*₂), 5.56 (s, 2H, -O*CH*₂N-), 4.22 (t, 2H, *J* = 4.6 Hz, -OCH₂CH₂OAc), 3.91 (t, 2H, *J* = 4.6 Hz, -O*CH*₂CH₂OAc), 2.04 (s, 3H, -C(O)*CH*₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.8, 163.0 (*J*_{CF} = 247.1 Hz), 160.4, 157.2, 153.8 (*J*_{CF} = 10.8 Hz), 152.5, 130.8 (*J*_{CF} = 9.4 Hz), 115.1 (*J*_{CF} = 3.4 Hz), 113.2 (*J*_{CF} = 20.9 Hz), 107.7 (*J*_{CF} = 25.4 Hz), 76.2, 68.1, 62.8, 20.8. R_f = 0.51 (dichloromethane/methanol = 10:1). HRMS: calcd. for C₁₄H₁₅FN₄NaO₅⁺, 361.0919, found 361.0904.

4c: The desired product was obtained starting from compound **3** and 2-fluorophenol with a 84 % yield (28.4 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.46-7.42 (m, 1H, J = 7.8 Hz, phenyl-H), 7.31-7.19 (m, 3H, phenyl-H), 6.75 (s, 1H, -C(O)*NH*₂), 5.69 (s, 1H, -C(O)*NH*₂), 5.59 (s, 2H, -O*CH*₂N-), 4.24 (t, 2H, J = 4.6 Hz, -O*CH*₂*CH*₂OAc), 3.92 (t, 2H, J = 4.8 Hz, -O*CH*₂CH₂OAc), 2.05 (s, 3H, -C(O)*CH*₃); ¹³C NMR (62.5 MHz, d_6 -DMSO and CDCl₃): δ 171.1, 160.8, 157.5, 153.2 ($J_{CF} = 248.6$ Hz), 152.2, 140.2 ($J_{CF} = 12.1$ Hz), 127.5 ($J_{CF} = 7.1$ Hz), 124.6 ($J_{CF} = 4.0$ Hz), 122.3, 117.0 ($J_{CF} = 17.8$ Hz), 76.0, 67.6, 62.8, 20.3. R_f = 0.53 (dichloromethane/methanol = 10:1). HRMS: calcd. for C₁₄H₁₅FN₄NaO₅⁺, 361.0919, found 361.0915.

4d: The desired product was obtained starting from compound 3 and 4-(trifluoromethyl)phenol with a 55 % yield (21.4 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.70 (d, 2H, J = 8.5 Hz, phenyl-H), 7.50 (d, 2H, J = 8.5 Hz, phenyl-H), 6.80 (s, 1H, -C(O)*NH*₂), 6.12 (s, 1H, -C(O)*NH*₂), 5.57 (s, 2H, -O*CH*₂N-), 4.22 (t, 2H, J = 4.6 Hz, $-OCH_2CH_2OAc$), 3.91 (t, 2H, J = 4.6 Hz, $-OCH_2CH_2OAc$), 2.04 (s, 3H, $-C(O)CH_3$); ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 160.4, 157.0, 155.3, 152.5, 128.4 ($J_{CF} = 32.8$ Hz), 127.3 ($J_{CF} = 3.6$ Hz), 123.6 ($J_{CF} = 270.4$ Hz), 119.8, 76.2, 68.2, 62.8, 20.8. R_f = 0.53 (dichloromethane/methanol = 10:1). HRMS: calcd. for $C_{15}H_{15}F_3N_4NaO_5^+$, 411.0887, found 411.0879.

4e: The desired product was obtained starting from compound **3** and 3-(trifluoromethyl)phenol with a 81 % yield (31.4 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.61-7.54 (m, 4H, phenyl-H), 6.79 (s, 1H, -C(O)*NH*₂), 6.20 (s, 1H, -C(O)*NH*₂), 5.57 (s, 2H, -O*CH*₂N-), 4.22 (t, 2H, *J* = 4.8 Hz, -O*CH*₂C*H*₂OAc), 3.91 (t, 2H, *J* = 4.6 Hz, -O*CH*₂CH₂OAc), 2.03 (s, 3H, -C(O)*CH*₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 160.4, 157.2, 153.1, 152.5, 132.5 (*J*_{CF} = 33.1 Hz), 130.6, 123.3 (*J*_{CF} = 270.8 Hz), 123.0 (*J*_{CF} = 10.2 Hz), 121.1, 116.9 (*J*_{CF} = 3.8 Hz), 76.2, 68.2, 62.8, 20.7. R_f = 0.53 (dichloromethane/methanol = 10:1). HRMS: calcd. for C₁₅H₁₅F₃N₄NaO₅⁺, 411.0887, found 411.0877.

4f: The desired product was obtained starting from compound **3** and 2-(trifluoromethyl)phenol with a 48 % yield (18.6 mg) as colorless oil. ¹H NMR (400MHz, CDCl₃): δ 7.73-7.65 (m, 3H, phenyl-H), 7.40 (t, 2H, J = 7.2 Hz, phenyl-H), 6.79 (s, 1H, -C(O)*NH*₂), 6.10 (s, 1H, -C(O)*NH*₂), 5.57 (s, 2H, -OCH₂N-), 4.22 (t, 2H, J = 4.6 Hz, -OCH₂CH₂OAc), 3.89 (t, 2H, J = 4.8 Hz, -OCH₂CH₂OAc), 2.05 (s, 3H, -C(O)*CH*₃); ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 160.5, 157.2, 152.5, 150.1, 133.7, 127.2 ($J_{CF} = 4.7$ Hz), 126.2, 122.7 ($J_{CF} = 271.4$ Hz), 121.8 ($J_{CF} = 31.8$ Hz), 76.2, 68.0, 62.8, 20.8. R_f = 0.58 (dichloromethane/methanol = 10:1). HRMS: calcd. for C₁₅H₁₅F₃N₄NaO₅⁺, 411.0887, found 411.0884.

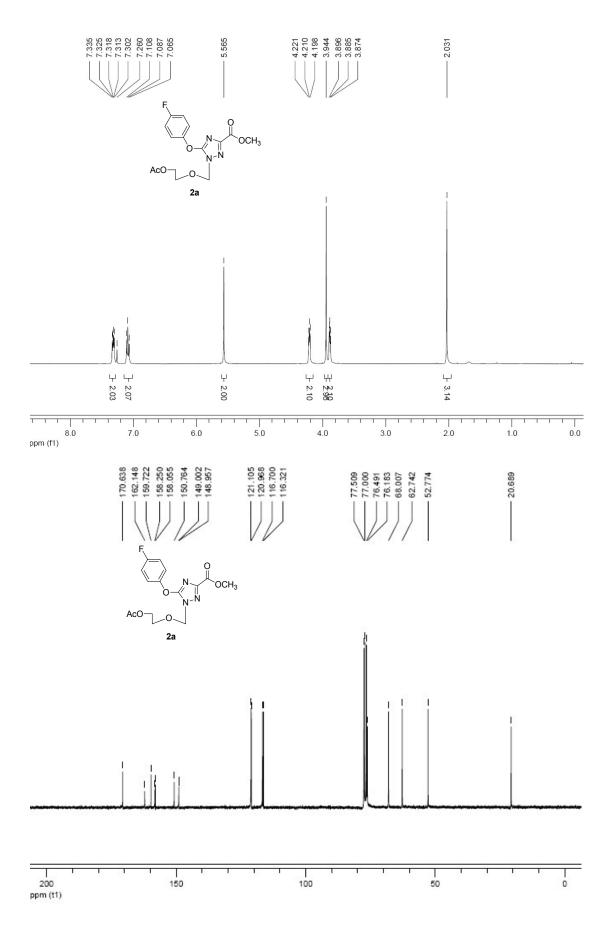
4g: The desired product was obtained starting from compound **3** and 4-chlorophenol with a 84 % yield (29.7 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.41-7.28 (m, 4H, phenyl-H), 6.79 (s, 1H, -C(O)*NH*₂), 6.10 (s, 1H, -C(O)*NH*₂), 5.55 (s, 2H, -OCH₂N-), 4.21 (t, 2H, J = 4.8 Hz, -OCH₂CH₂OAc), 3.90 (t, 2H, J = 4.8 Hz, -OCH₂CH₂OAc), 2.04 (s, 3H, -C(O)*CH*₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 160.4, 157.5, 152.5, 151.6, 131.5, 129.9, 120.9, 76.2, 68.1, 62.8, 20.8. R_f = 0.56 (dichloromethane/methanol = 10:1). HRMS: calcd. for C₁₄H₁₅ClN₄NaO₅⁺, 377.0623,

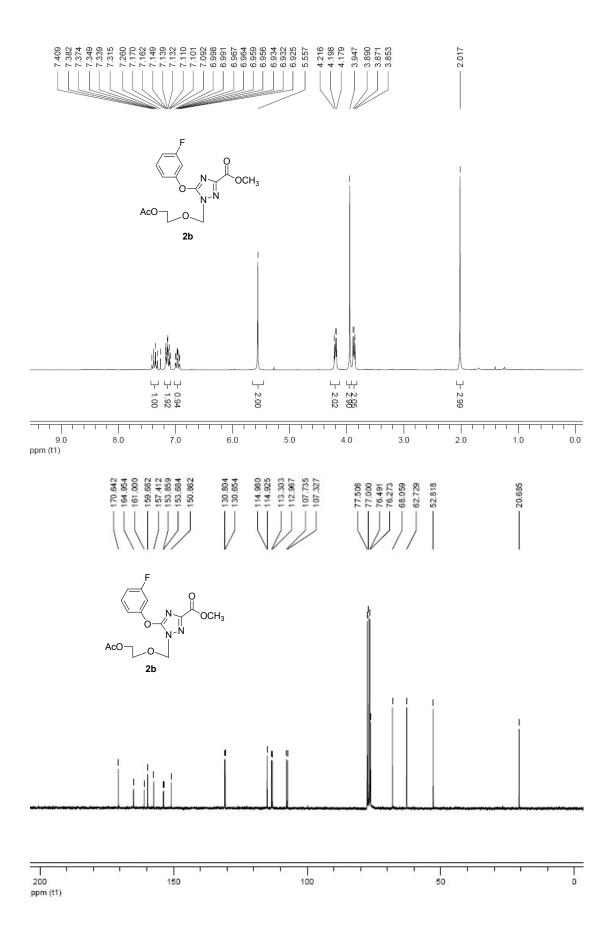
found 377.0621.

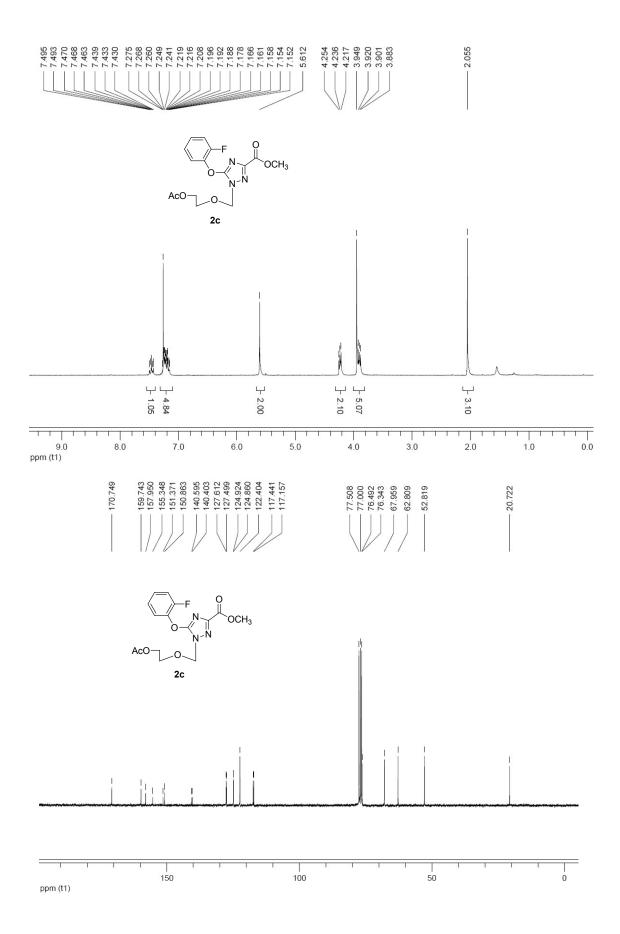
4h: The desired product was obtained starting from compound 3 and phenol with a 85 % yield (27.2 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.47-7.28 (m, 5H, phenyl-H), 6.80 (s, 1H, -C(O)NH₂), 5.64 (s, 1H, -C(O)NH₂), 5.57 (s, 2H, -OCH₂N-), 4.23 (t, 2H, J = 4.8 Hz, -OCH₂CH₂OAc), 3.92 (t, 2H, J = 4.6 Hz, -OCH₂CH₂OAc), 2.05 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 160.7, 157.7, 153.3, 152.5, 129.8, 119.5, 76.1, 68.0, 62.8, 20.7. = 126.1, R_{f} 0.50 (dichloromethane/methanol = 10:1). HRMS: calcd. for $C_{14}H_{16}N_4NaO_5^+$, 343.1013, found 343.1008.

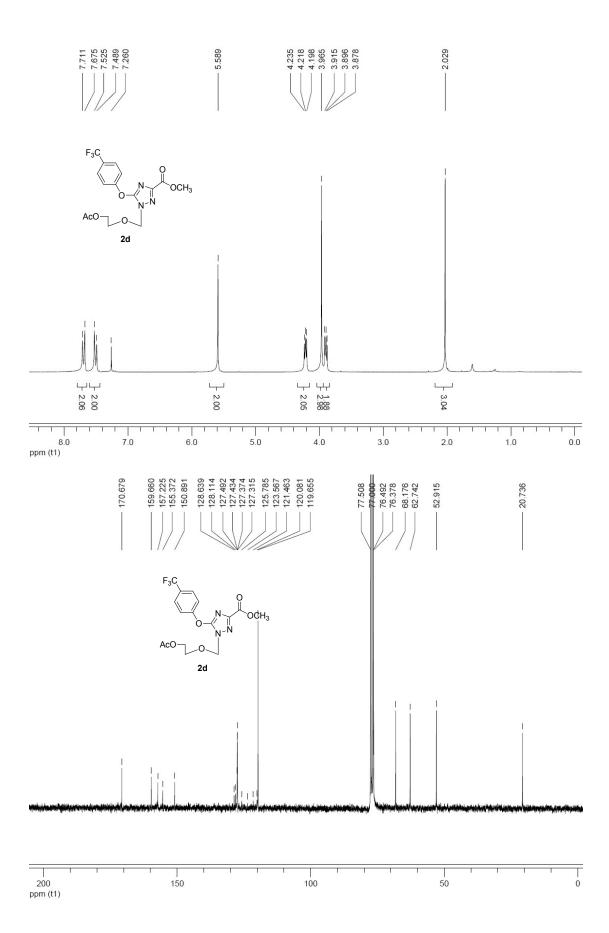
4i: The desired product was obtained starting from compound **3** and 4-methylphenol with a 88 % yield (29.4 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.18 (s, 4H, phenyl-H), 6.83 (s, 1H, -C(O)*NH*₂), 6.41 (s, 1H, -C(O)*NH*₂), 5.53 (s, 2H, -OCH₂N-), 4.20 (t, 2H, J = 4.6 Hz, -OCH₂CH₂OAc), 3.89 (t, 2H, J = 4.6 Hz, -OCH₂CH₂OAc), 2.34 (s, 3H, -PhCH₃), 2.02 (s, 3H, -C(O)*CH*₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 160.8, 158.0, 152.5, 151.1, 135.9, 130.2, 119.3, 76.0, 68.0, 62.8, 20.8. R_f = 0.56 (dichloromethane/methanol = 10:1). HRMS: calcd. for C₁₅H₁₈N₄NaO₅⁺, 357.1169, found 357.1176.

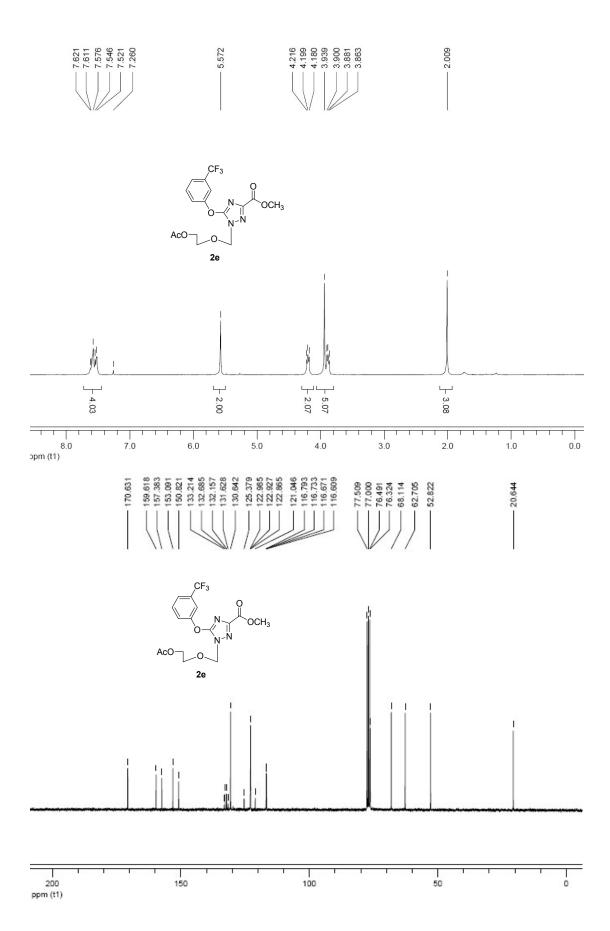
4j: The desired product was obtained starting from compound **3** and 3-methylphenol with a 80 % yield (26.7 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.33-7.27 (m, 1H, phenyl-H), 7.10 (t, 3H, J = 7.3 Hz, phenyl-H), 6.81 (s, 1H, -C(O)*NH*₂), 5.87 (s, 1H, -C(O)*NH*₂), 5.55 (s, 2H, -O*CH*₂N-), 4.22 (t, 2H, J = 4.6 Hz, -O*CH*₂C*H*₂OAc), 3.91 (t, 2H, J = 4.8 Hz, -O*CH*₂CH₂OAc), 2.39 (s, 3H, -Ph*CH*₃), 2.05 (s, 3H, -C(O)*CH*₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.8, 160.6, 157.9, 153.3, 152.6, 151.2, 140.3, 129.6, 126.9, 120.0, 116.4, 76.1, 68.0, 62.9, 21.3, 20.8. R_f = 0.47 (dichloromethane/methanol = 10:1). HRMS: calcd. for C₁₅H₁₈N₄NaO₅⁺, 357.1169, found 357.1175.

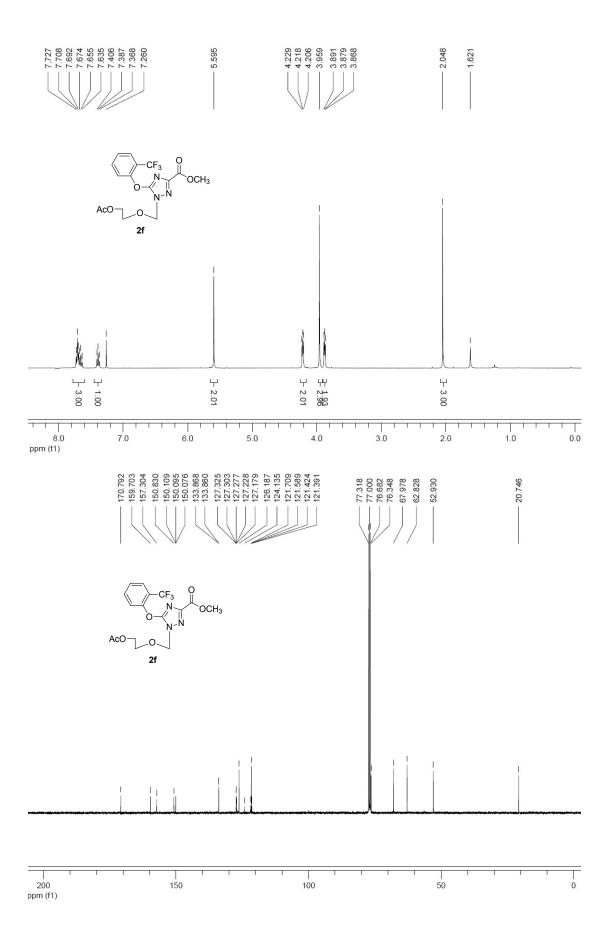

4k: The desired product was obtained starting from compound **3** and 2-methylphenol with a 74 % yield (24.7 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.29-7.16 (m, 4H, phenyl-H), 6.77 (s, 1H, -C(O)*NH*₂), 5.74 (s, 1H, -C(O)*NH*₂), 5.58 (s, 2H, -OCH₂N-), 4.22 (t, 2H, J = 5.0 Hz, -OCH₂CH₂OAc), 3.92 (t, 2H, J = 4.6 Hz, -

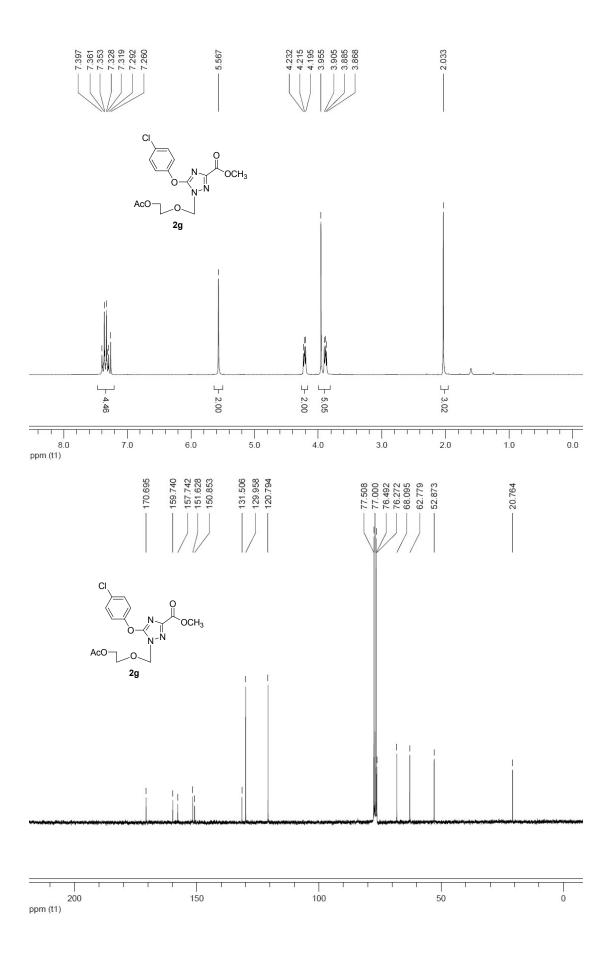

 $OCH_2CH_2OAc)$, 2.26 (s, 3H, -Ph*CH*₃), 2.05 (s, 3H, -C(O)*CH*₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 160.6, 157.9, 152.5, 151.7, 131.7, 129.3, 127.3, 126.4, 120.1, 76.1, 68.0, 62.9, 20.8, 16.0. R_f = 0.51 (dichloromethane/methanol = 10:1). HRMS: calcd. for C₁₅H₁₈N₄NaO₅⁺, 357.1169, found 357.1183.

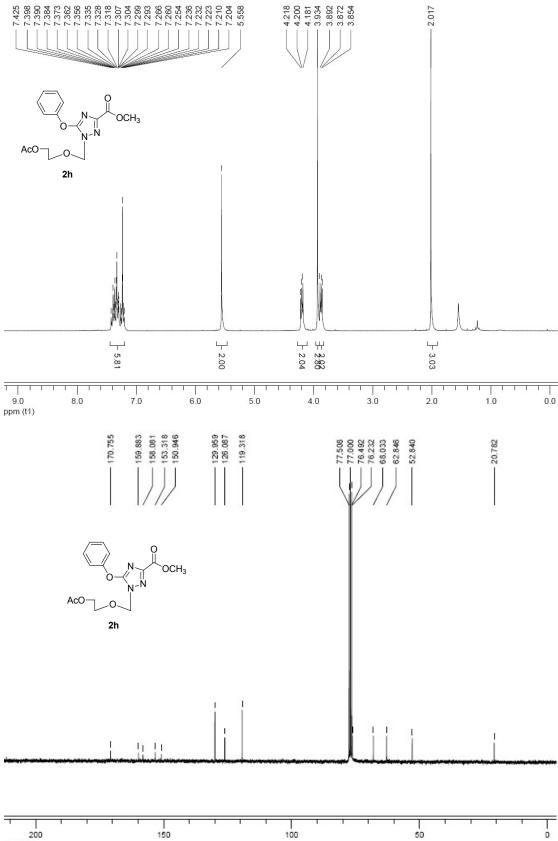

41: The desired product was obtained starting from compound **3** and 4-*n*-pentylphenol with a 81 % yield (31.6 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.20 (s, 4H, phenyl-H), 6.83 (s, 1H, -C(O)*NH*₂), 6.24 (s, 1H, -C(O)*NH*₂), 5.54 (s, 2H, -OCH₂N-), 4.21 (t, 2H, *J* = 4.6 Hz, -OCH₂CH₂OAc), 3.90 (t, 2H, *J* = 4.6 Hz, -OCH₂CH₂OAc), 2.60 (t, 2H, *J* = 7.8 Hz, -CH₂(CH₂)₃CH₃), 2.03 (s, 3H, -C(O)CH₃), 1.64-1.55 (m, 2H, -CH₂CH₂(CH₂)₂CH₃), 1.34-1.25 (m, 4H, -CH₂CH₂(CH₂)₂CH₃), 0.91-0.86 (m, 3H, -CH₂CH₂(CH₂)₂CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 160.7, 158.0, 152.5, 151.3, 140.9, 129.6, 119.2, 76.0, 68.0, 62.8, 35.2, 31.4, 31.1, 22.4, 20.7, 13.9. R_f = 0.53 (dichloromethane/methanol = 10:1). HRMS: calcd. for C₁₉H₂₆N₄NaO₅⁺, 413.1795, found 413.1779.

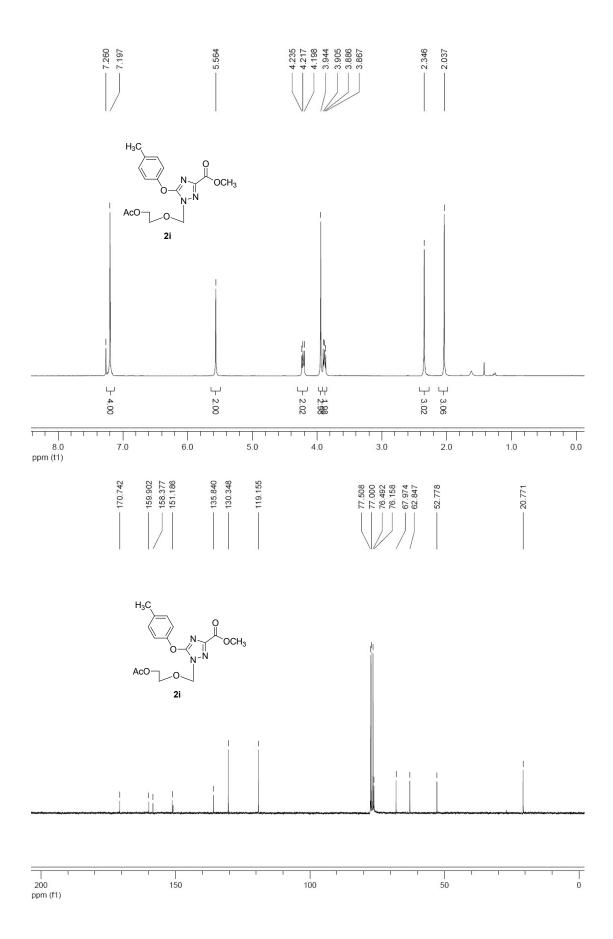

4m: The desired product was obtained starting from compound **3** and 4-*n*-heptylphenol with a 84 % yield (35.1 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.21 (s, 4H, phenyl-H), 6.81 (s, 1H, -C(O)*NH*₂), 5.84 (s, 1H, -C(O)*NH*₂), 5.55 (s, 2H, -OCH₂N-), 4.22 (t, 2H, J = 4.6 Hz, -OCH₂CH₂OAc), 3.91 (t, 2H, J = 4.8 Hz, -OCH₂CH₂OAc), 2.61 (t, 2H, J = 7.6 Hz, -CH₂(CH₂)₅CH₃), 2.05 (s, 3H, -C(O)CH₃), 1.63-1.58 (m, 2H, -CH₂CH₂(CH₂)₄CH₃), 1.32-1.28 (m, 8H, -CH₂CH₂(CH₂)₄CH₃), 0.91-0.86 (m, 3H, -CH₂CH₂(CH₂)₄CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 160.7, 158.0, 152.5, 151.3, 140.9, 129.6, 119.2, 76.0, 68.0, 62.9, 35.2, 31.7, 31.4, 29.2, 29.1, 22.6, 20.8, 14.0. R_f = 0.49 (dichloromethane/methanol = 10:1). HRMS: calcd. for C₂₁H₃₀N₄NaO₅⁺, 441.2108, found 441.2114.

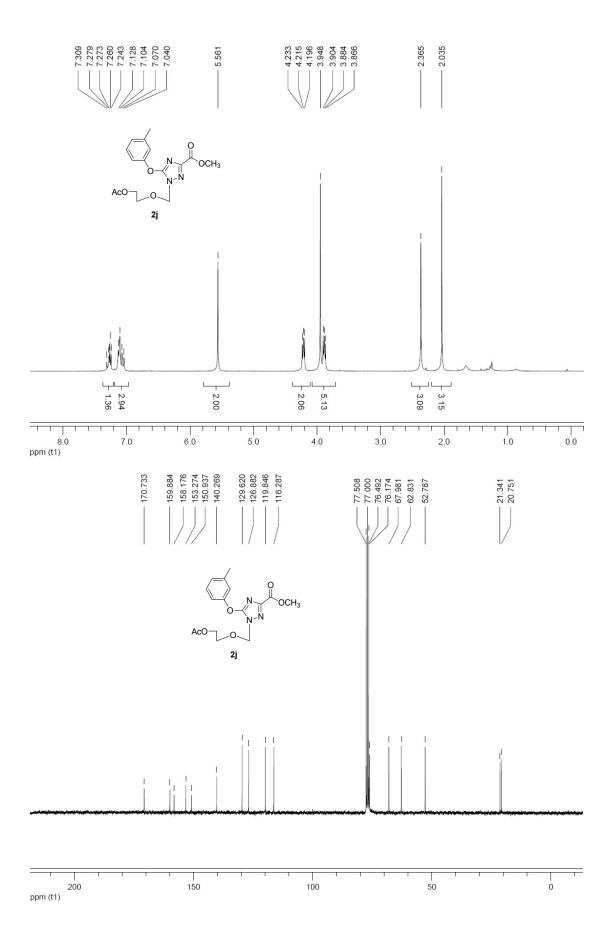

4n: The desired product was obtained starting from compound **3** and 4methoxyphenol with a 80 % yield (28.0 mg) as white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.24-7.21 (m, 2H, phenyl-H), 6.94-6.91 (m, 2H, phenyl-H), 6.79 (s, 1H, -C(O)*NH*₂), 5.63 (s, 1H, -C(O)*NH*₂), 5.55 (s, 2H, -O*CH*₂N-), 4.23 (t, 2H, *J* = 4.8 Hz, -OCH₂C*H*₂OAc), 3.92 (t, 2H, *J* = 4.6 Hz, -O*CH*₂CH₂OAc), 3.82 (s, 3H, -O*CH*₃); 2.05 (s, 3H, -C(O)*CH*₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.8, 160.7, 158.3, 157.5, 152.5, 146.9, 120.7, 114.7, 76.0, 68.0, 62.9, 55.6, 20.8. $R_f = 0.50$ (dichloromethane/methanol = 10:1). HRMS: calcd. for $C_{15}H_{18}N_4NaO_6^+$, 373.1119, found 373.1119.

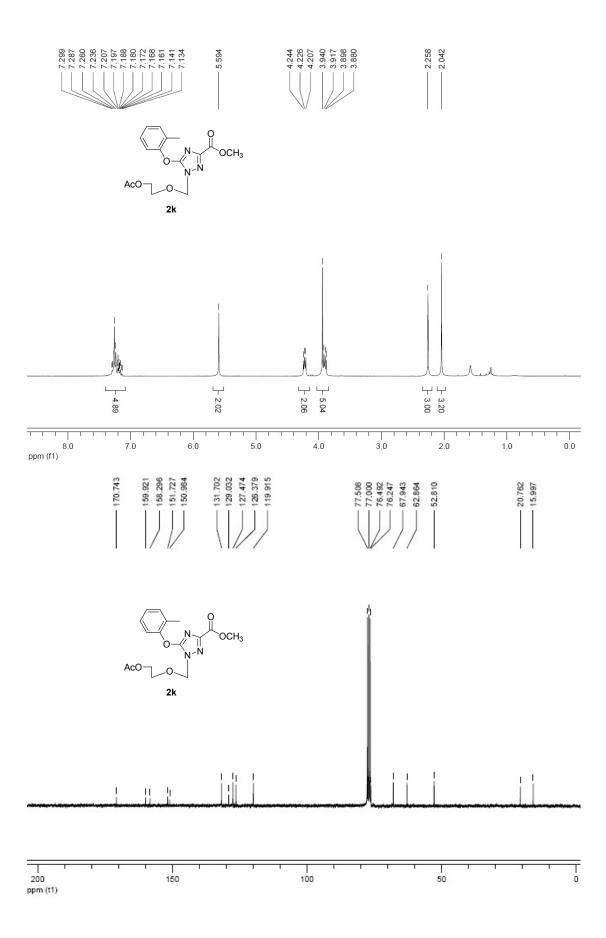


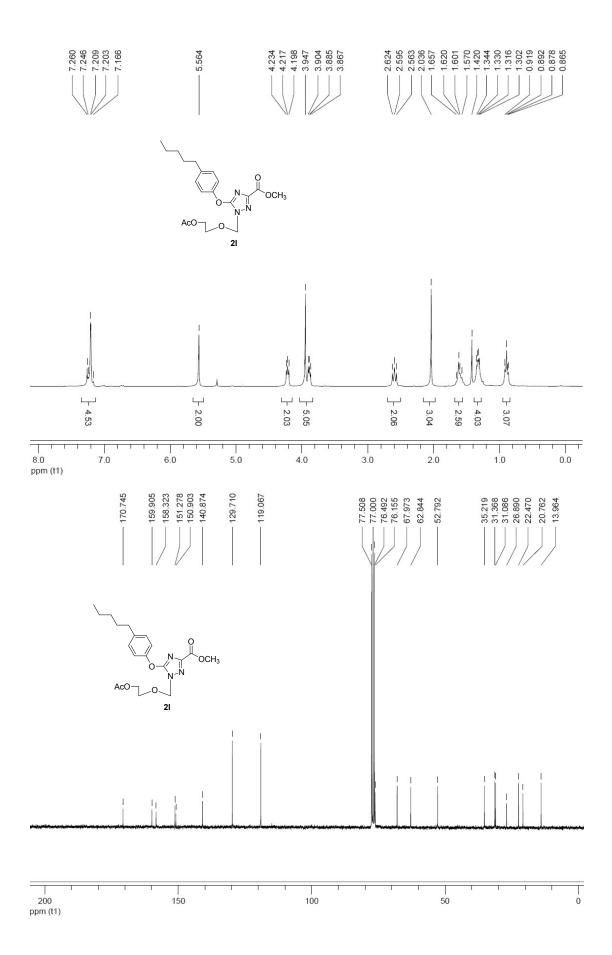


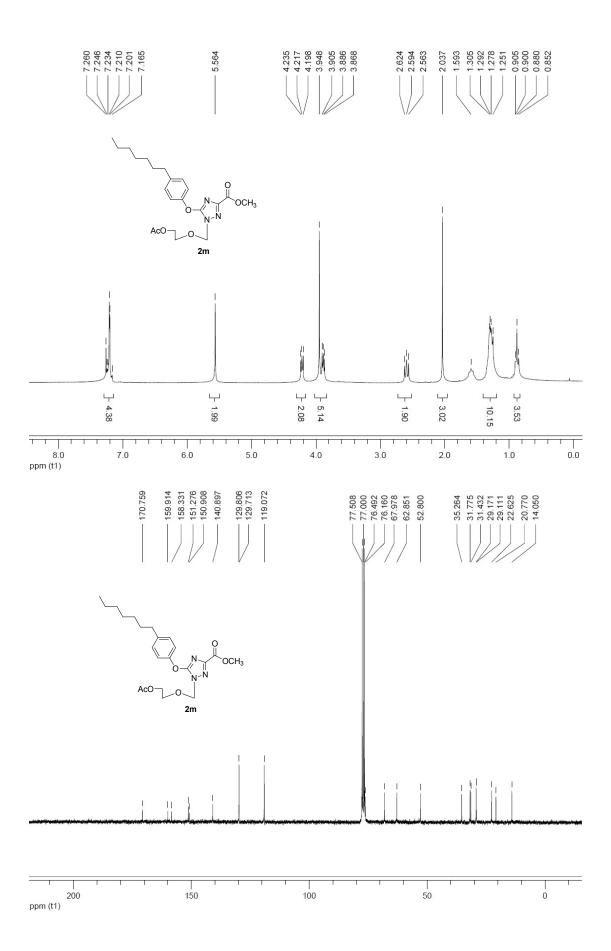











ppm (t1)

