Fluorescence Detection of Aromatic Amines and Photocatalytic
Degradation of Rhodamine B under UV light irradiation by
\section*{Luminescent Metal-Organic Frameworks}
Fengqin Wang*[a], Caifu Dong [a], Chengmiao Wang [a], Zongchao Yu [a], Shukun Guo [b], Zechuan Wang [a], Yongnan Zhao [b], Guodong Li [c]
${ }_{a}$ College of Environmental and Chemical Engineering \& Key Lab of Hollow Fiber Membrane Materials \& Membrane Process, Tianjin Polytechnic University, Tianjin 300387, China
bSchool of Materials Science and Engineering \& Tianjin Key Lab of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, Tianjin 300387, China
cThe State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 130023, China
E-mail: wangfengqin@tjpu.edu.cn Tel: (+86)-22-83955457

New Journal of Chemistry

Supplementary

Table S1 Crystal data and structure refinement for $\mathbf{1}$ and $\mathbf{2}$

Compound	1	2
Chemical formula	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{5} \mathrm{Zn}$	$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{CdNO}_{7}$
Formula weight	262.51	345.58
Temperature [K]	293(2)	113(2)
Wavelength[\AA]	0.71073	0.71073
Crystal system	Monoclinic	Triclinic
Space group	P2(1)/n	P-1
$\mathrm{a}[\AA]$	9.0342(18)	7.7683(16)
$\mathrm{b}[\AA]$	8.2698(17)	8.6089(17)
$\mathrm{c}[\AA]$	11.623(2)	8.6695(17)
$\alpha /\left[{ }^{\circ}\right]$	90	84.04(3)
$\beta /\left[{ }^{\circ}\right]$	100.90(3)	76.23(3)
$\gamma /\left[{ }^{\circ}\right]$	90	66.04(3)
Volume [\AA^{3}]	852.7(3)	514.56(18)
Z, Calculated density $\left[\mathrm{Mg} / \mathrm{m}^{3}\right]$	4, 2.045	2, 2.230
Absorption coefficient $\left[\mathrm{mm}^{-1}\right]$	2.880	2.148
Theta range for data collection (deg)	2.63 to 27.89	2.42 to 27.87
Limiting indices	$\begin{aligned} & -11 \leq \mathrm{h} \leq 11,-10 \leq \mathrm{k} \leq 10 \\ & -13 \leq 1 \leq 15 \end{aligned}$	$\begin{aligned} & -8 \leq \mathrm{h} \leq 10,-11 \leq \mathrm{k} \leq 11, \\ & -11 \leq 1 \leq 10 \end{aligned}$
$F(000)$	528	340
Reflections collected/unique	$8135 / 2027[R($ int $)=0.0291]$	$5113 / 2395[R($ int $)=0.0256]$
Data / restraints / parameters	2027 / 6 / 148	2395 / 12 / 178
Goodness-of-fit on F^{2}	1.085	1.059
Final R indices[$I>2 \sigma(I)]$	$R 1=0.0270, w R 2=0.0730$	$R 1=0.0222, w R 2=0.0581$
R indices (all data)	$R 1=0.0321, w R 2=0.0747$	$R 1=0.0239, w R 2=0.0584$
Largest diff. peak and hole[e. \AA^{-3}]	0.399 and -0.627	0.501 and -0.985

Table S2. Selected bond lengths and angles for $\mathbf{1}$ and $\mathbf{2}\left(\AA \AA^{\circ}\right)$

$\mathbf{1}$			$1.9636(18)$
$\mathrm{Zn}(1)-\mathrm{O}(2) \# 1$	$1.9570(16)$	$\mathrm{Zn}(1)-\mathrm{O}(5)$	$2.0363(18)$
$\mathrm{Zn}(1)-\mathrm{O}(4) \# 2$	$1.9756(15)$	$\mathrm{Zn}(1)-\mathrm{N}(1)$	$94.77(6)$
$\mathrm{O}(2) \# 1-\mathrm{Zn}(1)-\mathrm{O}(5)$	$109.50(7)$	$\mathrm{O}(2) \# 1-\mathrm{Zn}(1)-\mathrm{O}(4) \# 2$	$104.85(7)$
$\mathrm{O}(5)-\mathrm{Zn}(1)-\mathrm{O}(4) \# 2$	$110.23(7)$	$\mathrm{O}(2) \# 1-\mathrm{Zn}(1)-\mathrm{N}(1)$	$116.38(7)$
$\mathrm{O}(5)-\mathrm{Zn}(1)-\mathrm{N}(1)$	$118.10(7)$	$\mathrm{O}(4) \# 2-\mathrm{Zn}(1)-\mathrm{N}(1)$	
$\mathbf{2}$			$2.2614(18)$
$\mathrm{Cd}(1)-\mathrm{O}(1)$	$2.239(2)$	$\mathrm{Cd}(1)-\mathrm{O}(5)$	$2.3339(18)$
$\mathrm{Cd}(1)-\mathrm{O}(2) \# 1$	$2.287(2)$	$\mathrm{Cd}(1)-\mathrm{O}(4) \# 2$	$2.452(2)$
$\mathrm{Cd}(1)-\mathrm{N}(1) \# 3$	$2.417(2)$	$\mathrm{Cd}(1)-\mathrm{O}(3) \# 2$	$100.66(7)$
$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(5)$	$132.84(7)$	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(2) \# 1$	$84.99(7)$
$\mathrm{O}(5)-\mathrm{Cd}(1)-\mathrm{O}(2) \# 1$	$87.94(7)$	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(4) \# 2$	$87.82(7)$
$\mathrm{O}(5)-\mathrm{Cd}(1)-\mathrm{O}(4) \# 2$	$142.00(7)$	$\mathrm{O}(2) \# 1-\mathrm{Cd}(1)-\mathrm{O}(4) \# 2$	$85.27(7)$
$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{N}(1) \# 3$	$86.46(8)$	$\mathrm{O}(5)-\mathrm{Cd}(1)-\mathrm{N}(1) \# 3$	$95.46(7)$
$\mathrm{O}(2) \# 1-\mathrm{Cd}(1)-\mathrm{N}(1) \# 3$	$172.41(6)$	$\mathrm{O}(4) \# 2-\mathrm{Cd}(1)-\mathrm{N}(1) \# 3$	$87.61(7)$
$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(3) \# 2$	$137.78(7)$	$\mathrm{O}(5)-\mathrm{Cd}(1)-\mathrm{O}(3) \# 2$	$54.72(6)$
$\mathrm{O}(2) \# 1-\mathrm{Cd}(1)-\mathrm{O}(3) \# 2$	$90.82(7)$	$\mathrm{O}(4) \# 2-\mathrm{Cd}(1)-\mathrm{O}(3) \# 2$	
$\mathrm{~N}(1) \# 3-\mathrm{Cd}(1)-\mathrm{O}(3) \# 2$	$85.54(7)$		

Symmetry transformations used to generate equivalent atoms:
For $1 \# 1 x+1 / 2,-y+1 / 2, z-1 / 2 \quad \# 2 x, y-1, z$
For $2 \# 1-x+1,-y+1,-z \quad \# 2 x+1, y, z-1 \quad \# 3-x,-y+2,-z$

Table S3 Hydrogen bonds geometries ($\mathrm{nm},{ }^{\circ}$) for $\mathbf{1}$ and 2

$\mathbf{1}$					
$\mathrm{D}-\mathrm{H} \ldots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$(\mathrm{D} \ldots \mathrm{A})$	$\angle \mathrm{DHA}$	Symmetry code
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{O}(2) \# 5$	$0.895(9)$	$2.155(14)$	$2.981(3)$	$153.1(19)$	$-\mathrm{x}+1 / 2, \mathrm{y}-1 / 2,-\mathrm{z}+3 / 2$
$\mathrm{~N}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(4) \# 6$	$0.892(9)$	$2.387(18)$	$2.998(2)$	$125.8(15)$	$-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1$
$\mathrm{~N}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(1) \# 1$	$0.892(9)$	$2.476(16)$	$3.134(2)$	$131.0(17)$	$\mathrm{x}+1 / 2,-\mathrm{y}+1 / 2, \mathrm{z}-1 / 2$
$\mathrm{O}(5)-\mathrm{H}(5 \mathrm{~A}) \ldots \mathrm{O}(1) \# 7$	$0.844(9)$	$1.829(11)$	$2.660(2)$	$168(2)$	$-\mathrm{x},-\mathrm{y},-\mathrm{z}+1$
$\mathrm{O}(5)-\mathrm{H}(5 \mathrm{~B}) \ldots \mathrm{O}(3) \# 8$	$0.840(9)$	$1.804(10)$	$2.641(2)$	$175(2)$	$-\mathrm{x},-\mathrm{y}+1,-\mathrm{z}+1$
$\mathbf{2}$					
$\mathrm{O}(6)-\mathrm{H}(6 \mathrm{~A}) \ldots \mathrm{O}(2)$	$0.847(10)$	$2.11(2)$	$2.860(3)$	$148(3)$	$-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{O}(6) \# 5$	$0.900(9)$	$2.108(10)$	$2.992(3)$	$167(2)$	$\mathrm{x}, \mathrm{y}+1, \mathrm{z}$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(3) \# 5$	$0.893(9)$	$2.60(2)$	$3.224(3)$	$128(2)$	$\mathrm{x}, \mathrm{y}+1, \mathrm{z}$
$\mathrm{O}(5)-\mathrm{H}(5 \mathrm{~A}) \ldots \mathrm{O}(3) \# 6$	$0.855(9)$	$1.848(10)$	$2.701(3)$	$174(3)$	$-\mathrm{x},-\mathrm{y}+1,-\mathrm{z}$
$\mathrm{O}(6)-\mathrm{H}(6 \mathrm{~A}) \ldots \mathrm{O}(6) \# 6$	$0.847(10)$	$2.45(4)$	$2.907(6)$	$114(3)$	$-\mathrm{x},-\mathrm{y}+1,-\mathrm{z}$
$\mathrm{O}(5)-\mathrm{H}(5 \mathrm{~B}) \ldots \mathrm{O}(7) \# 7$	$0.853(10)$	$1.911(14)$	$2.732(3)$	$161(2)$	$\mathrm{x}, \mathrm{y}, \mathrm{z}-1$
$\mathrm{O}(6)-\mathrm{H}(6 \mathrm{~B}) \ldots \mathrm{O}(7) \# 7$	$0.848(10)$	$2.029(16)$	$2.846(4)$	$161(3)$	$\mathrm{x}, \mathrm{y}, \mathrm{z}-1$
$\mathrm{O}(7)-\mathrm{H}(7 \mathrm{~A}) \ldots \mathrm{O}(7) \# 8$	$0.838(10)$	$2.13(2)$	$2.805(5)$	$137(3)$	$-\mathrm{x}+1,-\mathrm{y},-\mathrm{z}+2$
$\mathrm{O}(7)-\mathrm{H}(7 \mathrm{~B}) \ldots \mathrm{O}(1) \# 9$	$0.839(10)$	$2.339(19)$	$3.116(3)$	$154(3)$	$\mathrm{x}, \mathrm{y}-1, \mathrm{z}+1$

Fig. S1 TG curve of $\mathbf{1}$

Fig. S2 PXRD pattern of 1

Fig. S3 TG curve of 2

Fig. S4 PXRD pattern of 2

Fig. S5 The fluorescence spectra of $\mathbf{1}\left(\lambda_{\mathrm{ex}}=310 \mathrm{~nm}\right)$ at the solid state at room temperature

Fig. S6 The fluorescence spectra of $2\left(\lambda_{e x}=310 \mathrm{~nm}\right)$ at the solid state at room temperature

Fig. S7 Emission spectra of $\mathbf{1}$ in different organic solvent at room temperature.

Fig. S8 Emission spectra of $\mathbf{2}$ in different organic solvent at room temperature

Fig. S9 UV-vis diffuse-reflectance spectra of $\mathbf{1}$ with BaSO_{4} as background

Fig. S10 UV-vis diffuse-reflectance spectra of $\mathbf{2}$ with BaSO_{4} as background

Fig. S11 Fluorescence titration of $\mathbf{1}$ dispersed in acetonitrile with the addition of different volume of $10^{-3} \mathrm{M}$ acetonitrile solution of p-toluidine. The excitation wavelength was 310 nm and fluorescence emission was monitored from 320 nm to 600 nm . The slit width for both excitation and emission were 5 nm .

Fig. S12 Fluorescence titration of $\mathbf{1}$ dispersed in acetonitrile with the addition of different volume of $10^{-3} \mathrm{M}$ acetonitrile solution of aniline. The excitation wavelength was 310 nm and fluorescence emission was monitored from 320 nm to 600 nm . The slit width for both excitation and emission were 5 nm .

Fig. S13 Fluorescence titration of $\mathbf{2}$ dispersed in methanol with the addition of different volume of $10^{-3} \mathrm{M}$ methanol solution of p-toluidine. The excitation wavelength was 310 nm and fluorescence emission was monitored from 320 nm to 600 nm . The slit width for both excitation and emission were 5 nm .

Fig. S14 Fluorescence titration of 2 dispersed in methanol with the addition of different volume of $10^{-3} \mathrm{M}$ methanol solution of aniline. The excitation wavelength was 310 nm and fluorescence emission was monitored from 320 nm to 600 nm . The slit width for both excitation and emission were 5 nm .

Fig. S15 Fluorescence titration of $\mathbf{1}$ dispersed in acetonitrile with the addition of different volume of $10^{-3} \mathrm{M}$ acetonitrile solution of triethylamine. The excitation wavelength was 310 nm and fluorescence emission was monitored from 320 nm to 600 nm . The slit width for both excitation and emission were 5 nm .

Fig. S16 Fluorescence titration of 2 dispersed in methanol with the addition of different volume of $10^{-3} \mathrm{M}$ methanol solution of triethylamine. The excitation wavelength was 310 nm and fluorescence emission was monitored from 320 nm to 600 nm . The slit width for both excitation and emission were 5 nm .

Fig. S17 UV-Vis absorption spectra of RhB solution degraded by $\mathbf{1}$ in 6 h under UV light irradiation.

Fig. S18 UV-Vis absorption spectra of RhB solution degraded by $\mathbf{2}$ in 6 h under UV light irradiation.

Fig. S19 UV-Vis absorption spectra of RhB solution degraded by $\mathbf{1}$ in 6 h without illumination.

Fig. S20 UV-Vis absorption spectra of RhB solution degraded under UV light irradiation without photocatalysis.

Fig. S21 UV-Vis absorption spectra of RhB solution degraded by 1 in 6h under natural light.

Fig. S22 UV-Vis absorption spectra of RhB solution degraded by $\mathbf{2}$ in 6 h without illumination.

Fig. S23 UV-Vis absorption spectra of RhB solution degraded by 2 in 6h under natural light.

Fig. S24 PXRD patterns of $\mathbf{1}$ and recycled $\mathbf{1}$.

Fig. 25 PXRD patterns of 2 and recycled 2.

Fig. S26 IR spectra of $\mathbf{1}$ and $\mathbf{2}$ before and after photocatalytic reactions.

