Fluorescence Detection of Aromatic Amines and Photocatalytic

Degradation of Rhodamine B under UV light irradiation by

Luminescent Metal-Organic Frameworks

Fengqin Wang^{*}[a], Caifu Dong [a], Chengmiao Wang [a], Zongchao Yu [a], Shukun Guo [b], Zechuan Wang [a], Yongnan Zhao [b], Guodong Li [c]

aCollege of Environmental and Chemical Engineering & Key Lab of Hollow Fiber Membrane Materials & Membrane Process, Tianjin Polytechnic University, Tianjin 300387, China bSchool of Materials Science and Engineering & Tianjin Key Lab of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, Tianjin 300387, China cThe State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 130023, China E-mail: wangfengqin@tjpu.edu.cn Tel: (+86)-22-83955457

New Journal of Chemistry

Supplementary

Compound	1	2		
Chemical formula	C ₈ H ₇ NO ₅ Zn	$C_8H_{11}CdNO_7$		
Formula weight	262.51	345.58		
Temperature [K]	293(2)	113(2)		
Wavelength[Å]	0.71073	0.71073		
Crystal system	Monoclinic	Triclinic		
Space group	P2(1)/n	P-1		
a[Å]	9.0342(18)	7.7683(16)		
b[Å]	8.2698(17)	8.6089(17)		
c[Å]	11.623(2)	8.6695(17)		
α/[°]	90	84.04(3)		
β/[°]	100.90(3)	76.23(3)		
γ/[°]	90	66.04(3)		
Volume [Å ³]	852.7(3)	514.56(18)		
Z, Calculated density[Mg/m ³]	4, 2.045	2, 2.230		
Absorption coefficient[mm ⁻¹]	2.880	2.148		
Theta range for data collection (deg)	2.63 to 27.89	2.42 to 27.87		
Limiting indices	$-11 \le h \le 11, -10 \le k \le 10,$ $-13 \le l \le 15$	$-8 \le h \le 10, -11 \le k \le 11,$ $-11 \le l \le 10$		
<i>F</i> (000)	528	340		
Reflections collected/unique	8135 / 2027 [R(int) = 0.0291]	5113 / 2395 [<i>R(int)</i> = 0.0256]		
Data / restraints / parameters	2027 / 6 / 148	2395 / 12 / 178		
Goodness-of-fit on F^2	1.085 1.059			
Final <i>R</i> indices[$I > 2\sigma(I)$]	R1 = 0.0270, wR2 = 0.0730	RI = 0.0222, wR2 = 0.0581		
R indices (all data)	RI = 0.0321, wR2 = 0.0747	R1 = 0.0239, wR2 = 0.0584		
Largest diff. peak and hole[e.Å ⁻³]	0.399 and -0.627	0.501 and -0.985		

Table S1 Crystal data and structure refinement for ${\bf 1}$ and ${\bf 2}$

1			
Zn(1)-O(2)#1	1.9570(16)	Zn(1)-O(5)	1.9636(18)
Zn(1)-O(4)#2	1.9756(15)	Zn(1)-N(1)	2.0363(18)
O(2)#1-Zn(1)-O(5)	109.50(7)	O(2)#1-Zn(1)-O(4)#2	94.77(6)
O(5)-Zn(1)-O(4)#2	110.23(7)	O(2)#1-Zn(1)-N(1)	104.85(7)
O(5)-Zn(1)-N(1)	118.10(7)	O(4)#2-Zn(1)-N(1)	116.38(7)
2			
Cd(1)-O(1)	2.239(2)	Cd(1)-O(5)	2.2614(18)
Cd(1)-O(2)#1	2.287(2)	Cd(1)-O(4)#2	2.3339(18)
Cd(1)-N(1)#3	2.417(2)	Cd(1)-O(3)#2	2.452(2)
O(1)-Cd(1)-O(5)	132.84(7)	O(1)-Cd(1)-O(2)#1	100.66(7)
O(5)-Cd(1)-O(2)#1	87.94(7)	O(1)-Cd(1)-O(4)#2	84.99(7)
O(5)-Cd(1)-O(4)#2	142.00(7)	O(2)#1-Cd(1)-O(4)#2	87.82(7)
O(1)-Cd(1)-N(1)#3	86.46(8)	O(5)-Cd(1)-N(1)#3	85.27(7)
O(2)#1-Cd(1)-N(1)#3	172.41(6)	O(4)#2-Cd(1)-N(1)#3	95.46(7)
O(1)-Cd(1)-O(3)#2	137.78(7)	O(5)-Cd(1)-O(3)#2	87.61(7)
O(2)#1-Cd(1)-O(3)#2	90.82(7)	O(4)#2-Cd(1)-O(3)#2	54.72(6)
N(1)#3-Cd(1)-O(3)#2	85.54(7)		

Table S2. Selected bond lengths and angles for **1** and **2**(Å, °)

Symmetry transformations used to generate equivalent atoms:

For **1** #1 x+1/2, -y+1/2, z-1/2 #2 x, y-1, z

For **2** #1 -x+1, -y+1, -z #2 x+1, y, z-1 #3 -x, -y+2, -z

1					
D-HA	d(D-H)	d(HA)	(D A)	∠DHA	Symmetry code
N(1)-H(1A)O(2)#5	0.895(9)	2.155(14)	2.981(3)	153.1(19)	-x+1/2, y-1/2, -z+3/2
N(1)-H(1B)O(4)#6	0.892(9)	2.387(18)	2.998(2)	125.8(15)	-x+1, -y+1, -z+1
N(1)-H(1B)O(1)#1	0.892(9)	2.476(16)	3.134(2)	131.0(17)	x+1/2, -y+1/2, z-1/2
O(5)-H(5A)O(1)#7	0.844(9)	1.829(11)	2.660(2)	168(2)	-x, -y, -z+1
O(5)-H(5B)O(3)#8	0.840(9)	1.804(10)	2.641(2)	175(2)	-x, -y+1, -z+1
2					
O(6)-H(6A)O(2)	0.847(10)	2.11(2)	2.860(3)	148(3)	-x+1, -y+1, -z
N(1)-H(1A)O(6)#5	0.900(9)	2.108(10)	2.992(3)	167(2)	x, y+1, z
N(1)-H(1B)O(3)#5	0.893(9)	2.60(2)	3.224(3)	128(2)	x, y+1, z
O(5)-H(5A)O(3)#6	0.855(9)	1.848(10)	2.701(3)	174(3)	-x, -y+1, -z
O(6)-H(6A)O(6)#6	0.847(10)	2.45(4)	2.907(6)	114(3)	-x, -y+1, -z
O(5)-H(5B)O(7)#7	0.853(10)	1.911(14)	2.732(3)	161(2)	x, y, z-1
O(6)-H(6B)O(7)#7	0.848(10)	2.029(16)	2.846(4)	161(3)	x, y, z-1
O(7)-H(7A)O(7)#8	0.838(10)	2.13(2)	2.805(5)	137(3)	-x+1, -y, -z+2
O(7)-H(7B)O(1)#9	0.839(10)	2.339(19)	3.116(3)	154(3)	x, y-1, z+1

Table S3 Hydrogen bonds geometries (nm, °) for 1 and 2

Fig. S4 PXRD pattern of 2

Fig. S5 The fluorescence spectra of 1 (λ_{ex} = 310 nm) at the solid state at room temperature

Fig. S6 The fluorescence spectra of 2 (λ_{ex} =310 nm) at the solid state at room temperature

Fig. S7 Emission spectra of **1** in different organic solvent at room temperature.

Fig. S8 Emission spectra of 2 in different organic solvent at room temperature

Fig. S9 UV–vis diffuse-reflectance spectra of $\mathbf{1}$ with BaSO₄ as background

Fig. S10 UV-vis diffuse-reflectance spectra of 2 with BaSO₄ as background

Fig. S11 Fluorescence titration of **1** dispersed in acetonitrile with the addition of different volume of 10^{-3} M acetonitrile solution of *p*-toluidine. The excitation wavelength was 310 nm and fluorescence emission was monitored from 320 nm to 600 nm. The slit width for both excitation and emission were 5 nm.

Fig. S12 Fluorescence titration of **1** dispersed in acetonitrile with the addition of different volume of 10^{-3} M acetonitrile solution of aniline. The excitation wavelength was 310 nm and fluorescence emission was monitored from 320 nm to 600 nm. The slit width for both excitation and emission were 5 nm.

Fig. S13 Fluorescence titration of **2** dispersed in methanol with the addition of different volume of 10^{-3} M methanol solution of *p*-toluidine. The excitation wavelength was 310 nm and fluorescence emission was monitored from 320 nm to 600 nm. The slit width for both excitation and emission were 5 nm.

Fig. S14 Fluorescence titration of **2** dispersed in methanol with the addition of different volume of 10^{-3} M methanol solution of aniline. The excitation wavelength was 310 nm and fluorescence emission was monitored from 320 nm to 600 nm. The slit width for both excitation and emission were 5 nm.

Fig. S15 Fluorescence titration of **1** dispersed in acetonitrile with the addition of different volume of 10^{-3} M acetonitrile solution of triethylamine. The excitation wavelength was 310 nm and fluorescence emission was monitored from 320 nm to 600 nm. The slit width for both excitation and emission were 5 nm.

Fig. S16 Fluorescence titration of **2** dispersed in methanol with the addition of different volume of 10^{-3} M methanol solution of triethylamine. The excitation wavelength was 310 nm and fluorescence emission was monitored from 320 nm to 600 nm. The slit width for both excitation and emission were 5 nm.

Fig. S17 UV-Vis absorption spectra of RhB solution degraded by $\mathbf{1}$ in 6h under UV light irradiation.

Fig. S18 UV-Vis absorption spectra of RhB solution degraded by **2** in 6h under UV light irradiation.

Fig. S19 UV-Vis absorption spectra of RhB solution degraded by **1** in 6h without illumination.

Fig. S20 UV-Vis absorption spectra of RhB solution degraded under UV light irradiation without photocatalysis.

Fig. S21 UV-Vis absorption spectra of RhB solution degraded by 1 in 6h under natural light.

Fig. S22 UV-Vis absorption spectra of RhB solution degraded by 2 in 6h without illumination.

Fig. S23 UV-Vis absorption spectra of RhB solution degraded by 2 in 6h under natural light.

Fig. 25 PXRD patterns of 2 and recycled 2.

Fig. S26 IR spectra of 1 and 2 before and after photocatalytic reactions.