Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Supporting Information

Selective Chemosensing of Spermidine based on Fluorescent Organic

Nanoparticles in Aqueous Media via Fe³⁺ Displacement Assay

Shweta Chopra^{a†}, Jasminder Singh^{b†}, Harpreet Kaur^a, Harpreet Singh^c, Narinder Singh^{*b}, Navneet Kaur^{*a}

^aCentre for Nanoscience and Nanotechnology (UIEAST), Panjab University, Chandigarh, India, 160014. Tel: 91-1722534464; E-mail: navneetkaur@pu.ac.in

^bDepartment of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Panjab, India, 140001, Tel: 91- 1881242176, E-mail: <u>nsingh@iitrpr.ac.in</u>

^c SMMEE, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Panjab, India, 140001

[†] Both authors contributed equally.

List of Figures

- Figure S1. ¹H NMR spectrum of compound 1.
- Figure S2. ¹³C NMR spectrum of compound 1.
- Figure S3. Mass Spectra of Compound 1.
- Figure S4. A competitive binding assay with FONs of 1 (10 μ M) for Fe³⁺ (100 μ M) in the presence of other metal ions in aqueous medium.
- Figure S5. Fluorescence spectrum of nano-aggregates of 1 at different pH values.
- Figure S6. Fluorescence spectrum of complex of nano-aggregates of 1 and Fe³⁺ at different pH values.

Figure S7. Change in fluorescence spectrum of nano-aggregates of 1 upon addition of 0-100 eq.

of TBA perchlorate.

- **Figure S8.** Change in fluorescence spectrum complex of nano-aggregates of **1** and Fe³⁺ upon addition of 0-100 eq. of TBA perchlorate.
- **Inset figure 3:** A plot of fluorescence intensity depending on the concentration of Fe³⁺ ranging

from 0-140 µM.

Inset figure 4B: A plot of fluorescence intensity depending on the concentration of Fe³⁺ ranging

from 0-125 µM.

Figure S1. ¹H NMR spectrum of compound 1.

Figure S2. ¹³C NMR spectrum of compound 1.

Figure S3. Mass Spectra of Compound 1.

Figure S4. A competitive binding assay with FONs of 1 (10 μ M) for Fe³⁺ (100 μ M) in the presence of other metal ions in aqueous medium.

Figure S5. Fluorescence spectrum of nano-aggregates of 1 at different pH values.

Figure S6. Fluorescence spectrum of complex of nano-aggregates of **1** and Fe³⁺ at different pH values.

Figure S7. Change in fluorescence spectrum of nano-aggregates of **1** upon addition of 0-100 equiv. of TBA perchlorate.

Figure S8. Change in fluorescence spectrum complex of nano-aggregates of 1 and Fe^{3+} upon addition of 0-100 equiv. of TBA perchlorate.

Inset figure 3: A plot of fluorescence intensity depending on the concentration of Fe^{3+} ranging from 0-140 μ M.

Inset figure 4B: A plot of fluorescence intensity depending on the concentration of Fe^{3+} ranging from 0-125 μ M.

Figure S9: Mass Spectrum of F1.Fe³⁺

Figure S11: Lehrer Chipman plot for calculation of binding constant and stoichiometry of $F1.Fe^{3+}$ complex

Figure S12: Lehrer Chipman plot for calculation of binding constant and stoichiometry of Spermidine.Fe³⁺ complex

Table S1: Comparison of reported sensors for spermidine in literature with the proposed sensor.

S.No.	Reference	Dection limit	Technique used	Selectivity
1.	Org. Biomol. Chem., 2009, 7, 4689– 4694	40 µM	UV- Visible	No
2	Journal of Pharmaceutical and Biomedical Analysis, 49, 2009, 587– 593	0.72 μΜ	Cyclic Voltammetry	No
3	Food Chemistry, 1999, 65, 117- 121.	0.5 μΜ	TLC	No
4	Chem. Commun., 2011, 47, 9639– 9641	-	UV-Vis	No
5	J. Agric. Food Chem. 1998, 46, 4233–4237	2 μΜ	Amperometric	No
6.	Food and Nutrition Sciences, 2014, 5, 138-146	-	Fluorimetric	No
7	Collect. Czech. Chem. Commun. 1983, 48, 672-678	0.02 mM	Amperometric (1- 2 Min)	No
8	Journal of Chromatography B Volumes 978–979, 26 January 2015, Pages 131–137	0.03 μM	Flow Injection Analysis	No
9	Presented Work	3.68 µM	Fluorimetric	Yes

1. D. Tanima, Y. Imamura, T. Kawabata, K. Tsubaki, Org. Biomol. Chem., 2009, 7, 4689-4694.

- 2. A. Mehdinia, S. H. Kazemi, S. Z. Bathaie, A. Alizadeh, M. Shamsipur, M. F. Mousavi, Journal of Pharmaceutical and Biomedical Analysis, 2009, 49,587–593.
- 3. A.R. Shalaby, Food Chemistry, 1999, 65, 117-121.
- 4. B. Lee, R. Scopelliti, K. Severin, Chem. Commun., 2011, 47, 9639-9641.
- 5. M. Esti, G. Volpe, L. Massignan, D. Compagnone, E. La Notte, G. Pallesch, J. Agric. Food Chem. 1998, 46, 4233–4237.
- 6. M. B. R. Rodriguez, C. S. Carneiro, M. B. S. Feijó, C. A. C. Júnior, S. B. Mano, Food and Nutrition Sciences, 2014, 5, 138-146.

- 7. L. Macholán, D. Jílková, Collect. Czech. Chem. Commun. 1983, 48, 672-678.
- 8. G. C. Chemnitius, M. Suzuki, K. Isobe, Journal of Chromatography B, 2015, 978, 131–137.