Highly Enantioselective Michael Addition Reactions with New Trimeric Chiral Phase Transfer Catalysts

Arockiam Jesin Beneto, Jayaraman Sivamani, Veeramanoharan Ashokkumar, Rajendiran Balasaravanan, Duraimurugan Kumaraguru and Ayyanar Siva *

Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625 021.
Corresponding authors : drasiva@gmail.com; ptcsiva@yahoo.co.in

Figure S1. ${ }^{1} \mathrm{H}$ NMR Spectrum of 1, 3, 5-tribromomesitylene (7).

Figure S2. ${ }^{13}$ C NMR Spectrum of 1, 3, 5-tribromomesitylene (7).

Figure S3. $\mathbf{H}^{\mathbf{1}}$ NMR Spectrum of Mesitylene based benzylcinchonine (9a).

Figure S4. C^{13} NMR Spectrum of Mesitylene based benzylcinchonine (9a).

Figure S5. ESI - Mass Spectrum of Mesitylene based benzylcinchonine (9a).

Figure S6. H $^{\mathbf{1}}$ NMR Spectrum of Mesitylene based allylcinchonine (9b).

Figure S7. $\mathbf{C l}^{13}$ NMR Spectrum of Mesitylene based allylcinchonine (9b).

Figure S8. ESI - Mass Spectrum of Mesitylene based allylcinchonine (9b).

Figure S9. ${ }^{1} \mathrm{H}$ NMR Spectrum of diethyl 2-(3-oxo-3-phenyl-1-p-tolylpropyl) malonate (5a).

Figure S10. ${ }^{13}$ C NMR Spectrum of diethyl 2-(3-oxo-3-phenyl-1-p-tolylpropyl) malonate (5a).

Figure S11. ${ }^{1} \mathrm{H}$ NMR Spectrum of diethyl 2-(1-(4-chlorophenyl)-3-oxo-3phenylpropyl)malonate (5b).

$70 \quad 16$
20

Figure S12. ${ }^{13}$ C NMR Spectrum of diethyl 2-(1-(4-chlorophenyl)-3-oxo-3phenylpropyl)malonate (5b).

Figure S13. ${ }^{1} \mathrm{H}$ NMR Spectrum of diethyl 2-(1-(4-methoxyphenyl)-3-oxo-3phenylpropyl)malonate (5c).

Figure S14. ${ }^{13}$ C NMR Spectrum of diethyl 2-(1-(4-methoxyphenyl)-3-oxo-3phenylpropyl)malonate (5c).

Figure S15. ${ }^{1} \mathrm{H}$ NMR Spectrum of diethyl 2-(1-(4-nitrophenyl)-3-oxo-3phenylpropyl)malonate (5d).

200

$$
\begin{array}{lllll}
140 & 130 & 120 & 110 & \begin{array}{ll}
100 \\
\mathrm{f} 1(\mathrm{ppm})
\end{array}
\end{array}
$$

Figure S16. ${ }^{13}$ C NMR Spectrum of diethyl 2-(1-(4-nitrophenyl)-3-oxo-3phenylpropyl)malonate (5d).

Figure S17. ${ }^{1} \mathrm{H}$ NMR Spectrum of diethyl 2-(3-(4-bromophenyl)-3-oxo-1-ptolylpropylpropyl)malonate (5e).

Figure S18. ${ }^{13}$ C NMR Spectrum of diethyl 2-(3-(4-bromophenyl)-3-oxo-1-ptolylpropylpropyl)malonate (5e).

Figure S19. ${ }^{1} \mathrm{H}$ NMR Spectrum of diethyl 2-(3-(4-bromophenyl)-1-(4-chlorophenyl)-3oxopropyl)malonate (5f).

Figure S20. ${ }^{13}$ C NMR Spectrum of diethyl 2-(3-(4-bromophenyl)-1-(4-chlorophenyl)-3oxopropyl)malonate (5f).

Figure S21. ${ }^{1} \mathrm{H}$ NMR Spectrum of diethyl 2-(3-(4-bromophenyl)-1-(4-methoxyphenyl)-3oxopropyl)malonate (5g).

Figure S22. ${ }^{13}$ C NMR Spectrum of diethyl 2-(3-(4-bromophenyl)-1-(4-methoxyphenyl)-3oxopropyl)malonate (5g).

Figure S23. ${ }^{1}$ H NMR Spectrum of diethyl 2-(3-(4-bromophenyl)-1-(4-nitrophenyl)-3oxopropyl)malonate (5h).

解 薣

Figure S24. ${ }^{13}$ C NMR Spectrum of diethyl 2-(3-(4-bromophenyl)-1-(4-nitrophenyl)-3oxopropyl)malonate (5h).

Figure S25. HPLC spectrum of Michael Adduct (5a) in presence of CMPTC (9a) and Toluene $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

Figure S26. HPLC spectrum of Michael Adduct (5a) in presence of CMPTC (9b) and Toluene $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

Figure S27. HPLC spectrum of Michael Adduct (5a) in presence of CMPTC (9a) and Toluene/ $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ condition.

Figure S28. HPLC spectrum of Michael Adduct (5a) in presence of CMPTC (9b) and Toluene/ $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ condition.

Figure S29. HPLC spectrum of Michael Adduct (5a) in presence of CMPTC (9a) and Toluene $/ \mathbf{N a O H}$ condition.

Figure S30. HPLC spectrum of Michael Adduct (5a) in presence of CMPTC (9b) and Toluene $/ \mathbf{N a O H}$ condition.

Figure S31. HPLC spectrum of Michael Adduct (5a) in presence of CMPTC (9a) and Toluene/KOH condition.

Figure S32. HPLC spectrum of Michael Adduct (5a) in presence of CMPTC (9b) and Toluene/KOH condition.

Figure S33. HPLC spectrum of Michael Adduct (5a) in presence of CMPTC (9a) and Toluene/K ${ }^{\text {t }} \mathbf{O B u}$ condition.

Figure S34. HPLC spectrum of Michael Adduct (5a) in presence of CMPTC (9b) and Toluene/K ${ }^{\text {t }} \mathbf{O B u}$ condition.

Figure S35. HPLC spectrum of Michael Adduct (5a) in presence of CMPTC (9a) and Cyclohexane $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

Figure S36. HPLC spectrum of Michael Adduct (5a) in presence of CMPTC (9b) and Cyclohexane $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

Figure S37. HPLC spectrum of Michael Adduct (5a) in presence of CMPTC (9a) and THF/K $\mathbf{K O}_{3}$ condition.

Figure S38. HPLC spectrum of Michael Adduct (5a) in presence of CMPTC (9b) and THF/K2 CO_{3} condition.

Figure S39. HPLC spectrum of Michael Adduct (5a) in presence of CMPTC (9a) and $\mathrm{ACN} / \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

Figure S40. HPLC spectrum of Michael Adduct (5a) in presence of CMPTC (9b) and $\mathrm{ACN} / \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

Figure S41. HPLC spectrum of Michael Adduct (5b) in presence of CMPTC (9a) and Toluene $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PDACh1 254 mm 4nm

PeakTable					
Peakसे	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	4.461	460833	38774	0.903	7.588
2	23.161	51223962	472181	99.097	92.412
Total		51690795	510954	100.000	100.000

Figure S42. HPLC spectrum of Michael Adduct (5b) in presence of CMPTC (9b) and Toluene $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDACh1 254 nm 4 mm

Peak	Ret. Tme	Area	Height	Area $\%$	Height $\%$
1	13.169	391597	4333	1.857	4.614
2	49.491	20696094	89569	98.143	95.386
Total		21087691	93902	100.000	100.000

Figure S43. HPLC spectrum of Michael Adduct (5c) in presence of CMPTC (9a) and Toluene $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDACh1 254 nm 4 nm

Peak	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	13.169	391597	4333	1.857	4.614
2	49.491	20696094	89569	98.143	95.386
Total		21087691	93902	100.000	100.000

Figure S44. HPLC spectrum of Michael Adduct (5c) in presence of CMPTC (9b) and Toluene $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

Figure S45. HPLC spectrum of Michael Adduct (5d) in presence of CMPTC (9a) and Toluene $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

Figure S46. HPLC spectrum of Michael Adduct (5d) in presence of CMPTC (9b) and Toluene $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

Figure S47. HPLC spectrum of Michael Adduct (5e) in presence of CMPTC (9a) and Toluene $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDACh1 254 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	4.136	1051451	65677	5.956	25.412
2	20.411	16603042	192775	94.044	74.588
Total		17654493	258452	100.000	100.000

Figure S48. HPLC spectrum of Michael Adduct (5e) in presence of CMPTC (9b) and Toluene $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$

PeakTable
PDACh1 254 mm 4 mm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	4.572	654306	34050	8.476	34.542
2	12.924	7065168	64526	91.524	65.458
Total.		7719474	98575	100.000	100.000

Figure S49. HPLC spectrum of Michael Adduct (5f) in presence of CMPTC (9a) and Toluene $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

Figure S50. HPLC spectrum of Michael Adduct (5f) in presence of CMPTC (9b) and Toluene $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

Figure S51. HPLC spectrum of Michael Adduct (5g) in presence of CMPTC (9a) and Toluene $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

Figure S52. HPLC spectrum of Michael Adduct (5g) in presence of CMPTC (9b) and Toluene $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

Figure S53. HPLC spectrum of Michael Adduct (5h) in presence of CMPTC (9a) and Toluene $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

Figure S54. HPLC spectrum of Michael Adduct (5h) in presence of CMPTC (9b) and Toluene $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ condition.

1 PDA Multi 1/254nm 4nm
PeakTable
PDA Ch1 254 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	6.351	4665702	201365	70.603	86.181
2	23.639	1942699	32287	29.397	13.819
Totai		6608401	233652	100.000	100.000

Figure S55. HPLC spectrum of Michael Adduct (5a) in presence of CMPTC (9b) and Toluene $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ at room temperature.

