Electronic supplementary information (ESI) for Natural Product Reports

SUPPORTING INFORMATION

Coumarin heterocyclic derivatives: chemical synthesis and biological activity.

Fernanda G. Medina,^a Joaquín G. Marrero,^{a*} Mariana M. Alonso,^{a*} Magdalena C. González,^a Iván Córdova-Guerrero,^b Ariana G. Teissier García,^a Soraya Osegueda-Robles.^a

^{*a*} Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Av. Mineral de Valenciana, No. 200, Col. Fracc. Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico. E-mail: jgonzalezm@ipn.mx, mmacias@ipn.mx.

^b Facultad de Ciencias Químicas e Ing. Universidad Autónoma de Baja California. Clz. Universidad 14418, Parque Industrial Internacional. Tijuana, B. C. CP 22390. México.

The 'Supporting Information' is a supplementary data illustrating a summary of all the available biological activities for the discussed coumarin heterocyclic derivatives.

The 'Supporting Information' was composed of two parts:

- 1. Table S1. Summary of the bioactivity data of the heterocyclic coumarin derivatives
- 2. References

Compound	Activity	Potency of the most active derivative	Comments	Ref.	
Pyrrole, indol and isoindole					
R_2 NH R_1 254	Inhibitors of DYRK1A kinase	$IC_{50} = 0.067 \ \mu M$	Potent kinase and topoisomerase I inhibition: (a) The C-3 and C-10 bis hydroxylated chomenoindole exhibited strong topoisomerase I inhibition ($IC_{50} =$ 38.5 µM) with only a weak sub- nanomolar kinase effect; (b) when a hydroxy group is positioned in C-2, an selective DYRK1A inhibition was observed ($IC_{50} = 0.067-0.076 \mu$ M). Molecular modelling docking studies revealed a Lamellarin-like binding mode with the ATP active site.	1	
	Furane,	benzofurane and thiophe	ene		
O CH3 R1 255	Anti-inflammatory (Carrageenin-induced hind-paw oedema)	% inhibition Oedema volume at 1h = 84%	Inhibition of inflammation comparable with phenylbutazone	2	
	Imidazol	e, oxazole, isoxazole, thia	azol		
Et_2N 256 $X = 0, S, NH$	Cytotoxic towards human cancer cell lines	Cell line IC ₅₀ (µl U87 0.21 B16 1.3 HeLa 1.2 DLD-1 0.21 SiHa 2.0 NIH 3T3 2.8	M)	3	
	H ₃ Inhibited the invasion of MCF-7/6 cells	$IC_{50} = 1 \ \mu M.$	The compounds inhibited only invasion without affecting growth, which excludes that they due their activity to cytotoxicity The mechanisms of action are not elucidated	4	
$ \begin{array}{c} $	Cytotoxic and apoptogenic effect towards human cancer cell lines	Cell line IC ₅₀ (μM) MCF-7 100-200 PC-3U87 100-200 IDA-MB231 20-60 LNCaP 20-60 U937 20-60	The effects were cancer cell line dependent. MDA-MB-231, LNCaP and U937 cells were most sensitive, MCF-7 were less sensitive, and PC-3 cells were more resistant Pro-apoptotic effect A sulfur in position 3 of the five membered heterocycle increased the effect on cell viability	5	
S NH N N 258 R	In vitro antimicrobial activity against S. aureus, S. pyogenes, H. influenzae, C. albicans, M. tuberculosis	AIC (μM) = 15-663	The antimicrobial activity was enhanced by bromide and hydroxyl groups. A hydroxyl group at the ortho position of a benzylidene imine was more effective than meta and para substitution patterns.	6	

Imidazole, pyrazole				
$ \begin{array}{c} $	Anticoagulant activity [<i>in vivo</i> coagulation time (CT) and prothrombin time (PT) determination; <i>in</i> <i>vitro</i> measurement of PIVKA-II levels]	Relative potency (%) compared to warfarin (R.P. %) = 17.3-19.4% CT = 20.83-22.50 s PT = 3.373-4.017 min	Anticoagulant activity: modest to high activity compared to warfarin Activity increased by introduction of acetyl or phenyl group at position 1 of the pyrazolyl functionality Ambiguity between <i>in vitro</i> (low) and <i>in vivo</i> (high), attributed to their <i>in vivo</i> dual mechanism of action of coumarin and pyrazole pharmacophore group	7
HO HO OHC N N R 102	Antibacterial: S. aureus, S. pyogenes, E. coli, P. aeruginosa Antifungic: C. neoformans, A. niger, A. flavus, C. albicans Antioxidant (DPPH)	Moderate to relatively strong Moderate to relatively strong Poor radical scavenging ability at lower concentrations.	Compounds with chloro exhibited remarkable activity against all the organisms tested.	8
H_3CO H_3 H_3CO H_3CO H_3CO H_2 H_3CO H_2	Cytotoxic and apoptogenic effect towards human cancer cell lines (60 cancer cell lines according to US NCI protocol)	The tested compounds exhibited high potency against colorectal cell line HCT-116 $IC_{50} = 0.01-2.8 \ \mu M$	More potent than doxorubicin (IC ₅₀ of Doxorubicin = 0.63 μ M) Potential molecular target PI3K (p110 α /p85 α)	9
$R_1 \xrightarrow{N}_{W}$	Inhibitors of aromatase, assayed against AR (CYP19) and 17α - hydroxylase/C17,20- lyase (CYP17), two related P450 enzymes, which are responsible for catalyzing the final step in estrogen and androgen biosynthesis, respectively	$IC_{50} = 0.047 \ \mu M \ (363-$ fold more active than aminoglutethimide)	The most salient features from the SAFIR: (a) The position of the 1- methylimidazolyl substituent on the coumarin ring plays a central role in the modulation of the inhibitory activity (b) The length of the bridge linking the imidazole to the coumarin ring was another important structural element modulating the enzyme affinity (c) A single CH ₂ seems to be an optimal bridge to link the imidazolyl to the coumarin ring (d) The effect on the affinity obtained by introducing a phenyl substituent in the coumarin scaffold is position-dependent. (e) The carbonyl group of the coumarin lactone ring seems an important structural determinant for the activity since the thiocarbonyl is significantly less active	10

Inhibitors of human carbonic anhydrase (hCA) I and II. $IC_{50} = 22.09 \ \mu M$ and 20.33 μM for hCA I and hCA II, respectively.

All the synthesized compounds inhibited the CA isoenzymes activity

11

		Triazole			
$RO \qquad \qquad$	Cytotoxic towards human cancer cell lines	Cell line MCF-7 SKBr-3	IC ₅₀ (μM) 7.45-18.33 6.52-8.17	Its anti-proliferative activities are directly related to Hsp90 inhibition These compounds are interfering with the Hsp90-mediated protein folding process	12
R_1 R_2 261 R_1 R_2	Cytotoxic towards human cancer cell lines	Cell line MCF-7 SW480 A549	IC ₅₀ (μM) 5.89 1.99 0.52	The compounds inhibit the proliferation of cancer cells through inducing apoptosis and arresting the cell-cycle at G2/M phase	13
R_1 R_2 N N N R_2 0 0 262	Antifungal: A. niger, A. fumigatus, A. flavus, C. albicans Antibacterial: S. aureus, B. subtilis, S. epidermis, E. coli, P. aeruginosa, S. typhi, K. pneumoniae	Strong Strong		Low or moderate toxicity risks in in silico analysis Good oral bioavailability Druglikeness and drug-score values similar or better than some commercial antimicrobials such as amphotericin B.	14
$ \begin{array}{c} $	Inhibitors of inducible nitric oxide synthase. The secretion of tumor necrosis factor (TNF- α), prostaglandin E2 (PGE2) and the production of NO by neutrophils were quantified in basal or <i>Escherichia coli</i> lipopolysaccharide (LPS)-stimulated conditions.	Most of consignificantly production be stimulated n with a concer μ M None of the molecules in secretion of TNF- α .	npounds inhibited NO by LPS- eutrophils entration of 10 tested hibited the PGE2 and	This compounds reduced nitric oxide (NO) production by reducing iNOS gene and protein expressions and iNOS activity. Compounds did not affect eNOS activity,	15
$ \begin{array}{c} $	Inhibitors of lysine specific demethylase 1 (LSD1) The downregulation of LSD1 expression or inhibition of its activity can inhibit cancer progression	$IC_{50} = 0.39$ µ 74-fold more that of trany	uM e potent than lcypromine	Reversible inhibition In vitro selectivity against lysine specific demethylase 1 without inhibition against monoamine oxidases (MAOs) A and B Most of the mono-substituted coumarins at the 7-position had excellent inhibitory activity	16

Tetrazole

$\begin{array}{c c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	17
Pyridine	
$ \begin{array}{c} \underset{l}{ \underset{l}{ }} \\ \underset{l}{ }\\ \underset{l}{ \\l}{ }\\ \underset{l}{ }\\ l}{ }\\ \underset{l}{ }\\ \underset{l}{ }\\ \underset{l}{ }\\ \underset{l}{ \\ l}{ }\\ \underset{l}{ \\ l}{ \\ l}{ l}{ \\ l$	7 for dopamine D_2 and tonin 5-HT _{1A} and 5- ors. for 5-HT _{2C} and H1 duce the risk of ciated with chronic and hERG channels ncidence of torsade odels, the compund inhibited 18 e-induced climbing d Conditioned esponse (CAR) without the highest dose tested and a higher threshold y induction compared the two currently ypical antipsychotics, and clozapine.
$\begin{array}{c} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	d compounds showed y than the 5- 19 in vitro studies ($IC_{50} =$
Pyrane and benzopyrane	
$\begin{array}{c} HO \\ \downarrow $	aflammatory and tivity ranyl ethers of vere found to be most 20 gst all the compounds. and methoxy in coumarin ring found he activity
Anti-HIV activity (tested against HIV-1 $EC_{50} = 1.88 \times 10^{-4} \mu M$ $EC_{50} = 0.043$ replication in acutely Therapeutic index = Therapeutic infected H9 188,032 188,032	$5 \mu\text{M}$ index = 41,667 21

$ \begin{array}{c} & & \\ & & $	Antioxidant (DPPH) Inhibition the soybean lipoxygenase Inhibition of trypsin Antiinflammatory (Carrageenin-induced hind-paw edema) Acetylcholinesterase inhibitory activity	Reduction ability = 80.4% (0.5 mM, 60 min) Inhibition = 58.5–100% Inhibition of trypsin = 15–96.3% Inhibition = 48.7–58.9% (Indomethacin induced 57% protection at equivalent concentration) Piperazine $IC_{50} = 4.5 \mu M$	The attempt to correlate the biological results with some physicochemical parameters was unsuccessful. Coumarins having phenylpiperazine substitution on the positions 3 and/or 4 with a suitable linking chain show significant anti-AChE activities. The inhibitory potency was strongly influenced by the length and shape of the spacer	22
$\begin{array}{c} R_2 \\ \downarrow \\ 2 \\ 2 \\ 2 \\ 70 \end{array} \xrightarrow{R_1} \\ 1 \\ 1 \\ 2 \\ 70 \\ 270 \end{array}$	Cholinesterase inhibitory activity evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE).	IC ₅₀ = 1.6-74 μM against AChE IC ₅₀ = 15-387 μM against BuChE	Highest AChE inhibitory activity with 26-fold selectivity for AChE respect to the BuChE. Mixed-mode inhibition pattern, in which both catalytic anionic subsite (CAS) and peripheral anionic binding site (PAS) are occupied by the ligand.	24
$ \begin{array}{c} $	Inhibitor of β- secretase (BACE-1) in vitro	$IC_{50} = 0.093 \ \mu M$	The best spacer is a methylene group The amide group linked to position 4 appears to be the most favourable In the <i>in vitro</i> enzymatic assay, the hydrophobicity of the derivatives appear to be a determinative parameter in the BACE-1 inhibitory activities.	25
R_2 R_2 R_1 R_3 R_1 R_2 R_1 R_2 R_1 R_2 R_1	α ₁ -Adrenoceptor antagonists evaluated by induced contractions of rat anococcygeus smooth muscles according	$pA_2 = 9.365*$ *The activity was expressed as $pA_2=-log[compound]_2$, in which [compound]_2 is defined as the measured concentrations of the compounds assayed according to Schild's methods. ²⁶	The most of compounds exhibited strong α 1-AR antagonistic activity (pA ₂ = 8.005-9.365) Better activity than prazosin. Structure–activity relationship: Small hydrophobic group at the terminal heterocyclic ring and ortho substituents on the phenyl ring of phenylpiperazine moiety were the essential structural factors for α 1-AR antagonistic activity.	27
$HO \qquad O \qquad O \\ R_1 \qquad CH_2 \qquad 273 \\ R_2 \qquad R_2$	Antiinflammatory (Carrageenin-induced hind-paw edema) Adjuvant-induced disease (AID) as model of rheumatoid arthritis	Inhibition % of induced Carrageenin Rat Paw Edema CPE % = 77.7% (Indomethacin, induced 47% protection at an equivalent concentration) Rats treated with	Hydrophilicity, the presence of a free 7-OH, and steric requirements for the substituent at position 8 are the most important factors in terms of SAR. Although the antiinflammatory mechanism explaining the activity on CPE remains unclear, the <i>in</i>	28

		compound did not develop severe arthritis	<i>vivo</i> antiinflammatory activity of the synthesized compounds seems to be related with their high HO scavenging and reducing activity, in vitro.	
		Pyrimidine		
R R R R R R R R R R	Vasorelaxing activity effect on nor- epinephrine induced contracture in thoracic rat aortic rings	$IC_{50} = 411 \ \mu M \ (IC_{50} \ prazocin \ 487 \ \mu M)$	Increase in aqueous solubility while retaining good hydrophobic character of the overall molecule is the key for maintaining high relaxation activity.	29
		Other cycles		
R = 0	Inhibitors of the tumor-associated carbonic anhydrase isoforms IX and XII	K _{Is} (μM) = 0.0065-0.0686 (hCA IX) 0.0043-0.0598 (hCA XII)		30
$ \begin{array}{c} N=N\\ N \\ N \\ V \\ V \\ V \\ V \\ N \\ V \\ N \\ N$	Inhibitors of amyloid- β aggregation	Plateau reduction (% inhibition) = 96	Ranging from a modest reduction of the equilibrium plateau to nearly complete inhibition Pronounced effect upon inhibition of A β aggregation when coumarin was functionalized with nitrogen containing ring structures benzothiazole and triazole Coumarin analogs exhibit a number of additional AD- associated pharmacological effects and thus possess the potential to serve as multi-target AD therapeutics	31
	Moderate triglyceride- lowering activity	Triglyceride lowering activity (%) = 45	3 mg/kg/day in the Swiss albino mouse model Several times better than fenofibrate [Triglyceride lowering activity = 36% (at 30 mg/kg)]	32
$HN \qquad S \qquad OH \\ \downarrow \qquad \downarrow$	Cytotoxic towards human cancer cell lines	Cell line IC ₅₀ (μM) MCF-7 5.35 SK-N-MC 3.75 MDA-MB 231 10.32	The best compound is at least two- fold more potent than etoposide against MCF-7, SKN-MC, and MDA-MB 231 cell lines	33
R_1 N-NH R_2 R_3 239	Antioxidant (DPPH) Antibacterial (S. Epidermidis, methicillin-resistant S. aureus (MRSA))	IC ₅₀ = 120 μ M S. epidermidis MIC = 6.3 μ M MRSA MIC = 25 μ M		34

R C C R C R C R R C R	In vitro antimalarial activity against CQ sensitive 3D7 strain of <i>P. falciparum</i> . In vivo antimalarial activity against multi- drug-resistant <i>P. yoelii</i> <i>nigeriensis</i> in mice at 96 mg/kg/day by oral route using Peters's procedure.	IC_{50} = 0.082–0.85 μM Suppression of 41.14% on day 4	Moderate activity Limitation: poor solubility both in oil and water	35
O N X NH H S-Bu 278	<i>In vivo</i> anti- inflammatory effects by using the functional model of carrageen ininduced rat paw edema	% inhibition of induced carrageenin rat paw edema at 0.01 mmol/kg CPE % = 41-73%	Indomethacin induced 47% protection at an equivalent dose Lipophilicity does not increase in parallel to inhibition The in vivo anti-inflammatory activity seems to be related with their high HO scavenging and reducing activities.	36

References

- C. Neagoie, E. Vedrenne, F. Buron, J.-Y. Mérour, S. Rosca, S. Bourg, O. Lozach, L. Meijer, B. Baldeyrou, A. Lansiaux and S. Routier, *Eur. J. Med. Chem.*, 2012, 49, 379.
- 2 M. Ghate, D. Manohar, V. Kulkarni, R. Shobha, and S. Y. Kattimani, Eur. J. Med. Chem., 2003, 38, 297.
- 3 S. Lee, K. Sivakumar, W.-S. Shin, F. Xie and Q. Wang, Bioorg. Med. Chem. Lett., 2006, 16, 4596.
- 4 V. S. Parmar, N. K. Sharma, M. Husain, A. C. Watterson, J. Kumar, L. A. Samuelson, A. L. Cholli, A. K. Prasad, A. Kumar, S. Malhotra, N. Kumar, A. Jha, A. Singh, I. Singh, Himanshu, A. Vats, N. A. Shakil, S. Trikha, S. Mukherjee, S. K. Sharma, S. K. Singh, A. Kumar, H. N. Jha, C. E. Olsen, C. P. Stove, M. E. Bracke and M. M. Mareel, *Bioorg. Med. Chem.*, 2003, **11**, 913.
- 5 A. Jashari, F. Imeri, L. Ballazhi, A. Shabani, B. Mikhova, G. Dräger, E. Popovski and A. Huwiler, Bioorg. Med. Chem., 2014, 22, 2655.
- 6 A. Arshad, H. Osman, M. C. Bagley, Eur. J. Med. Chem., 2011, 46, 3788.
- 7 O. M. Abdelhafez, K. M. Amin, R. Z. Batran, T. J. Maher, S. A. Nada, and S. Sethumadhavan, Bioorg. Med. Chem., 2010, 18. 3371.
- 8 N. Renuka and K. A. Kumar, Bioorg. Med. Chem. Lett., 2013, 23, 6406.
- 9 K. M. Amin, A. A. M. Eissa, S. M. Abou-Seri, F. M. Awadallah and G. S. Hassan, *Eur. J. Med. Chem.*, 2013, 60, 187.
- 10 (a) F. Leonetti, A. Favia, A. Rao, R. Aliano, A. Paluszcak, R. W. Hartmann and A. Carotti, J. Med. Chem., 2004, 47, 6792; (b) A. Stefanachi, A. D. Favia, O. Nicolotti, F. Leonetti, L. Pisani, M. Catto, C. Zimmer, R. W. Hartmann and A. Carotti, J. Med. Chem., 2011, 54, 1613.
- 11 M. O. Karatas, B. Alici, U. Cakir, E. Cetinkaya, D. Demir, A. Ergün, N. Gençer and O. Arslan, J. Enzyme Inhib. Med. Chem., 2013, 28, 299.
- 12 L. B. Peterson and B. S. J. Blagg, Bioorg. Med. Chem. Lett., 2010, 20, 3957.
- 13 W. Zhang, Z. Li, M. Zhou, F. Wu, X. Hou, H. Luo, H. Liu, X. Han, G. Yan, Z. Ding and R. Li, *Bioorg. Med. Chem. Lett.*, 2014, 24, 799.
- 14 K. Kushwaha, N. Kaushik, Lata and S. C. Jain, Bioorg. Med. Chem. Lett., 2014, 24, 1795.

- 15 H. A. Stefani, K. Gueogjan, F. Manarin, S. H. P. Farsky, J. Zukerman-Schpector, I. Caracelli, S. R. Pizano Rodrigues, M. N. Muscará, S. A. Teixeira, J. R. Santin, I. D. Machado, S. M. Bolonheis, R. Curi and M. A. Vinolo, *Eur. J. Med. Chem.*, 2012, **58**, 117.
- 16 X. -W. Ye, Y. -C. Zheng, Y.-C. Duan, M. -M. Wang, B. Yu, J. -L. Ren, J. -L. Ma, E. Zhanga and H. -M. Liu, *Med. Chem. Commun.*, 2014, 5, 650.
- 17 V. V. Mulwad, R. B. Pawar and A. C. Chaskar, J. Korean Chem. Soc., 2008, 52, 249.
- 18 Y. Chen, S. Wang, X. Xu, X. Liu, M. Yu, S. Zhao, S. Liu, Y. Qiu, T. Zhang, B.-F. Liu and G. Zhang, J. Med. Chem., 2013, 56, 4671.
- 19 W. S. Hamama, M. E. Ibrahim, A. E. Metwalli and H. H. Zoorob, Med. Chem. Res., 2014, 23, 2615.
- 20 M. Ghate, R. A. Kusanur and M. V. Kulkarni, Eur. J. Med. Chem., 2005, 40, 882.
- 21 (a) L. Xie, G. Allaway, C. Wild, N. Kilgore and K.-H. Lee, *Bioorg. Med. Chem. Lett.*, 2001, 11, 2291;
 (b) Q. Zhang, Y. Chen, P. Xia, Y. Xia, Z.-Y. Yang, D. Yu, S. L. Morris-Natschke and K.-H. Lee, *Bioorg. Med. Chem. Lett.*, 2004, 14, 5855; (c) S.-Q. Xu, X. Yan, Y. Chen, P. Xia, K. Qian, D. Yu, Y. Xia, Z.-Y. Yang, S. L. Morris-Natschke and K.-H. Lee, *Bioorg. Med. Chem.*, 2010, 18, 7203.
- 22 D. N. Nicolaides, D. R. Gautam, K. E. Litinas, D. J. Hadjipavlou-Litina and K. C. Fylaktakidou, *Eur. J. Med. Chem.*, 2004, **39**, 323.
- 23 (a) Q. Shen, Q. Peng, J. Shao, X. Liu, Z. Huang, X. Pu, L. Ma and Y. M. Li., *Eur. J. Med. Chem.*, 2005, 40, 1307; (b) X. Zhou, X.-B. Wang, T. Wang and L.-Y. Kong, *Bioorg. Med. Chem.*, 2008, 16, 8011; (c) S. F. Razavi, M. Khoobi, H. Nadri, A. Sakhteman, A. Moradi, S. Emami, A. Foroumadi, A. Shafiee, *Eur. J. Med. Chem.*, 2013, 64, 252.
- 24 M. Alipour, M. Khoobi, A. Moradi, H. Nadri, F. H. Moghadam, S. Emami and Z. Hasanpour, *Eur. J. Med. Chem.*, 2014, **82**, 536.
- 25 C. Garino, N. Pietrancosta, Y. Laras, V. Moret, A. Rolland, G. Quéléver and J.-L. Kraus, *Bioorg. Med. Chem. Lett.*, 2006, 16, 1995.
- 26 S.-S. Xie, X.-B. Wang, J.-Y. Li and L.-Y. Kong, Chem. Pharm. Bull., 2013, 61, 16
- 27 O. Arunlakshana and H. O. Schild, Br. J. Pharmacol. Chemother., 1959, 14, 48.
- 28 C. A. Kontogiorgis and D. J. Hadjipavlou-Litina, J. Med. Chem., 2005, 48, 6400.
- 29 K. M. Amin, F. M. Awadalla, A. A. M. Eissa, S. M. Abou-Seri and G. S. Hassan, *Bioorg. Med. Chem.*, 2011, **19**, 6087.
- 30 (a) A. Grandane, M. Tanc, R. Zalubovskis and C. T. Supuran, *Bioorg. Med. Chem.*, 2014, 22, 1522; (b)
 A. Maresca, A. Scozzafava and C. T. Supuran, *Bioorg. Med. Chem. Lett.*, 2010, 20, 7255; (c) F. Carta,
 A. Maresca, A. Scozzafava and C. T. Supuran, *Bioorg. Med. Chem. Lett.*, 2012, 22, 267.
- 31 D. Soto-Ortega, B. P. Murphy, F. J. Gonzalez-Velasquez, K. A. Wilson, F. Xie, Q. Wang and M. A. Moss, *Bioorg. Med. Chem.*, 2011, 19, 2596.
- 32 G. R. Madhavan, V. Balraju, B. Mallesham, R. Chakrabarti and V. B. Lohray, *Bioorg. Med. Chem. Lett.*, 2003, **13**, 2547.
- 33 M. Khoobi, A. Foroumadi, S. Emami, M. Safavi, G. Dehghan, B. H. Alizadeh, A. Ramazani, S. K. Ardestani and A. Shafiee, *Chem. Biol. Drug Des.*, 2011, **78**, 580.
- 34 L. V. Frolova, I. Malik, P. Y. Uglinskii, S. Rogelj, A. Kornienko and I. V. Magedov, *Tetrahedron Lett.*, 2011, **52**, 6643.
- 35 K. V. Shashidhara, A. Kumar, R. P. Dodda, N. N. Krishna, Bioorg. Med. Chem. Lett., 2012, 22, 3926.
- 36 G. Melagraki, A. Afantitis, O. Markopoulou, D. J. Hadjipavlou-litina, *Eur. J. Med. Chem.*, 2009, 44, 3020.