Supporting Information

Theoretical Studies on Structures, ¹³C NMR Chemical Shifts, Aromaticity, and Chemical Reactivity of Finite-Length Open-Ended Armchair Single-Walled Carbon Nanotubes

Lei Vincent Liu,^a Wei Quan Tian,^b Ya Kun Chen,^a Yu Adam Zhang,^a and Yan Alexander Wang^{a*}

^aDepartment of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada

^bState Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130023, China

E-mail: yawang@chem.ubc.ca

Figure S1. ¹³C NMR chemical shifts (CS) and nucleus independent chemical shifts (NICS) of the finite-length open-ended (5,5) SWCNTs C_{40} - C_{180} .

C130 CS NICS(0) NICS(1) 1 200.68 A -17.86 -9.31 2 118.57 B -4.86 -4.91 3 136.04 C 4.22 0.84 4 130.50 D -6.31 -6.50 5 118.20 E -5.98 -6.13 6 120.40 F 4.13 1.21 7 127.26	C140 C 140 C S NICS(0) NICS(1) 1 200.01 A -14.81 -7.40 2 118.26 B -6.38 -6.38 3 135.58 C 4.68 0.64 4 129.41 D 0.66 -2.02 5 119.87 E -7.99 -7.96 6 121.60 F 3.66 0.10 7 122.96	C150 CS NICS(0) NICS(1) 1 199.72 A -13.44 -8.98 2 102.37 B 5.22 -0.89 3 138.03 C 10.70 1.89 4 125.18 D 0.32 -5.89 5 98.77 E 7.26 -0.30 6 122.29 F 9.72 1.19 7 121.09 G 1.02 -5.77 8 98.07
C160 C C C C C C C C C C C C C C C C C C C	C170 CS NICS(0) NICS(1) 1 200.37 A -14.59 -7.36 2 117.28 B -5.12 -5.69 3 136.01 C 5.80 1.21 4 129.75 D 0.91 -2.12 5 118.37 E -6.29 -7.11 6 121.31 F 5.82 1.22 7 123.80 G 4.28 0.09 8 121.35 H -6.11 -7.17 9 121.36	C180 C 180 C 1 199.81 A -11.51 -7.84 2 99.61 B 6.84 -0.48 3 138.51 C 13.49 2.50 4 124.42 D 3.83 -4.50 5 95.57 E 9.53 0.22 6 122.09 F 13.96 2.15 7 118.82 G 5.61 -4.14 8 93.21 H 12.76 1.97 9 119.86

LUMO of C₆₀

LUMO of C₈₀

HOMO of C_{90}

LUMO of C_{90}

LUMO of C₁₀₀

HOMO of C_{110}

LUMO of C₁₁₀

HOMO of C_{120}

LUMO of C₁₃₀

LUMO of C₁₄₀

HOMO of C₁₄₀

HOMO of C_{170}

HOMO of C_{150}

LUMO of C₁₅₀

LUMO of C₁₈₀

HOMO of C₁₆₀

LUMO of C₁₆₀

