Supporting Information

A general nonaqueous route to crystalline alkaline earth aluminate nanostructures

M. Karmaoui¹, M.-G. Willinger¹, L. Mafra¹, T. Herntrich¹, N. Pinna^{1,2,*}

1- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal

2- World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-744, Korea

*Corresponding author e-mail: pinna@ua.pt, pinna@snu.ac.kr

Figure SI-1. Low angle region of the XRD powder CaAl₄O₇

Figure SI-2. Thermogravimetric (TGA) and differential scattering calorimetric analysis (DSC) of the aluminate nanostructures: a) SrAl₄O₇, b) CaAl₄O₇, c) BaAl₂O₄

Aluminate	Carbon (weight %)	Hydrogen (weight %)
SrAl ₄ O ₇	8.90	1.34
CaAl ₄ O ₇	15.85	1.94
BaAl ₂ O ₄	9.23	1.36

Elemental Analysis (CHN)

Figure SI-3. FT-IR speactra of the as synthesized alkaline earth aluminates SrAl₄O₇ (black), CaAl₄O₇ (blue) and BaAl₂O₄ (red).

NMR:

In addition to the solvent benzyl alcohol, benzyl ether, toluene and benzaldehyde were found in significant quantities.

Figure SI-4. ¹H- NMR spectrum of the reaction solution measured in CDCl₃.

From the ¹H spectrum:

Benzaldehyde: ¹H NMR δ = 10.04 ppm (1H, -CHO), toluene: ¹H NMR δ = 2.49 ppm (3H, -CH₃), Benzyl ether ¹H NMR δ = 4.68 ppm (2H, -CH₂-). Resonances in the range of 7.50-7.00 ppm are due to aromatic protons (superimposed)

Figure SI-5. ¹³C- NMR spectrum of the reaction solution measured in CDCl₃.

From the ¹³C spectrum:

Benzaldehyde: ¹³C NMR δ = 192.5 ppm (-CHO), 128.0, 128.83 ppm (C_{ph}, other aromatic carbon signal superimposed), toluene: ¹³C NMR δ = 21.26 ppm (-CH₃) (C_{ph}, other aromatic carbon signal superimposed), benzyl ether: ¹³C NMR δ = 71.80 ppm (-CH₂-), 128.19 ppm (C_{ph}, other aromatic carbon signal superimposed).

Solid State NMR of the aluminum oxide hybrid

Figure SI-6. ¹³C CPMAS spectrum of the aluminium oxide lamellar hybrid. Asterisks depict spinning sidebands.

Figure SI-7. ²⁷Al MAS spectrum of the aluminum oxide lamellar hybrid.